Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 236(2): 639-655, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794841

RESUMEN

The development of ectomycorrhizal (ECM) symbioses between soil fungi and tree roots requires modification of root cell walls. The pectin-mediated adhesion between adjacent root cells loosens to accommodate fungal hyphae in the Hartig net, facilitating nutrient exchange between partners. We investigated the role of fungal pectin modifying enzymes in Laccaria bicolor for ECM formation with Populus tremula × Populus tremuloides. We combine transcriptomics of cell-wall-related enzymes in both partners during ECM formation, immunolocalisation of pectin (Homogalacturonan, HG) epitopes in different methylesterification states, pectin methylesterase (PME) activity assays and functional analyses of transgenic L. bicolor to uncover pectin modification mechanisms and the requirement of fungal pectin methylesterases (LbPMEs) for ECM formation. Immunolocalisation identified remodelling of pectin towards de-esterified HG during ECM formation, which was accompanied by increased LbPME1 expression and PME activity. Overexpression or RNAi of the ECM-induced LbPME1 in transgenic L. bicolor lines led to reduced ECM formation. Hartig Nets formed with LbPME1 RNAi lines were shallower, whereas those formed with LbPME1 overexpressors were deeper. This suggests that LbPME1 plays a role in ECM formation potentially through HG de-esterification, which initiates loosening of adjacent root cells to facilitate Hartig net formation.


Asunto(s)
Laccaria , Micorrizas , Populus , Hidrolasas de Éster Carboxílico , Epítopos/metabolismo , Laccaria/genética , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Populus/metabolismo , Suelo
2.
Front Plant Sci ; 13: 1060804, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726681

RESUMEN

Proanthocyanidins (PAs) are polymeric phenolic compounds found in plants and used in many industrial applications. Despite strong evidence of herbivore and pathogen resistance-related properties of PAs, their in planta function is not fully understood. Determining the location and dynamics of PAs in plant tissues and cellular compartments is crucial to understand their mode of action. Such an approach requires microscopic localization with fluorescent dyes that specifically bind to PAs. Such dyes have hitherto been lacking. Here, we show that 4-dimethylaminocinnamaldehyde (DMACA) can be used as a PA-specific fluorescent dye that allows localization of PAs at high resolution in cell walls and inside cells using confocal microscopy, revealing features of previously unreported wall-bound PAs. We demonstrate several novel usages of DMACA as a fluorophore by taking advantage of its double staining compatibility with other fluorescent dyes. We illustrate the use of the dye alone and its co-localization with cell wall polymers in different Populus root tissues. The easy-to-use fluorescent staining method, together with its high photostability and compatibility with other fluorogenic dyes, makes DMACA a valuable tool for uncovering the biological function of PAs at a cellular level in plant tissues. DMACA can also be used in other plant tissues than roots, however care needs to be taken when tissues contain compounds that autofluoresce in the red spectral region which can be confounded with the PA-specific DMACA signal.

3.
Microorganisms ; 9(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34576712

RESUMEN

The colonisation of tree roots by ectomycorrhizal (ECM) fungi is the result of numerous signalling exchanges between organisms, many of which occur before physical contact. However, information is lacking about these exchanges and the compounds that are secreted by each organism before contact. This is in part due to a lack of low disturbance sampling methods with sufficient temporal and spatial resolution to capture these exchanges. Using a novel in situ microdialysis approach, we sampled metabolites released from Eucalyptus grandis and Pisolithus microcarpus independently and during indirect contact over a 48-h time-course using UPLC-MS. A total of 560 and 1530 molecular features (MFs; ESI- and ESI+ respectively) were identified with significant differential abundance from control treatments. We observed that indirect contact between organisms altered the secretion of MFs to produce a distinct metabolomic profile compared to either organism independently. Many of these MFs were produced within the first hour of contact and included several phenylpropanoids, fatty acids and organic acids. These findings show that the secreted metabolome, particularly of the ECM fungus, can rapidly shift during the early stages of pre-symbiotic contact and highlight the importance of observing these early interactions in greater detail. We present microdialysis as a useful tool for examining plant-fungal signalling with high temporal resolution and with minimal experimental disturbance.

4.
Cells ; 10(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34440740

RESUMEN

Secondary growth relies on precise and specialized transcriptional networks that determine cell division, differentiation, and maturation of xylem cells. We identified a novel role for the ethylene-induced Populus Ethylene Response Factor PtERF85 (Potri.015G023200) in balancing xylem cell expansion and secondary cell wall (SCW) formation in hybrid aspen (Populus tremula x tremuloides). Expression of PtERF85 is high in phloem and cambium cells and during the expansion of xylem cells, while it is low in maturing xylem tissue. Extending PtERF85 expression into SCW forming zones of woody tissues through ectopic expression reduced wood density and SCW thickness of xylem fibers but increased fiber diameter. Xylem transcriptomes from the transgenic trees revealed transcriptional induction of genes involved in cell expansion, translation, and growth. The expression of genes associated with plant vascular development and the biosynthesis of SCW chemical components such as xylan and lignin, was down-regulated in the transgenic trees. Our results suggest that PtERF85 activates genes related to xylem cell expansion, while preventing transcriptional activation of genes related to SCW formation. The importance of precise spatial expression of PtERF85 during wood development together with the observed phenotypes in response to ectopic PtERF85 expression suggests that PtERF85 contributes to the transition of fiber cells from elongation to secondary cell wall deposition.


Asunto(s)
Pared Celular/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Xilema/metabolismo , Cámbium/metabolismo , Pared Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Etilenos/farmacología , Redes Reguladoras de Genes , Lignina/metabolismo , Floema/metabolismo , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Populus/crecimiento & desarrollo , Regulación hacia Arriba/efectos de los fármacos , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/citología , Xilema/efectos de los fármacos
5.
Ecol Lett ; 24(6): 1215-1224, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33749095

RESUMEN

Trees receive growth-limiting nitrogen from their ectomycorrhizal symbionts, but supplying the fungi with carbon can also cause nitrogen immobilization, which hampers tree growth. We present results from field and greenhouse experiments combined with mathematical modelling, showing that these are not conflicting outcomes. Mycorrhizal networks connect multiple trees, and we modulated C provision by strangling subsets of Pinus sylvestris trees, assuming that carbon supply to fungi was reduced proportionally to the strangled fraction. We conclude that trees gain additional nitrogen at the expense of their neighbours by supplying more carbon to the fungi. But this additional carbon supply aggravates nitrogen limitation via immobilization of the shared fungal biomass. We illustrate the evolutionary underpinnings of this situation by drawing on the analogous tragedy of the commons, where the shared mycorrhizal network is the commons, and explain how rising atmospheric CO2 may lead to greater nitrogen immobilization in the future.


Asunto(s)
Micorrizas , Biomasa , Carbono , Nitrógeno , Raíces de Plantas , Suelo , Árboles
6.
Curr Genet ; 66(4): 791-811, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32170354

RESUMEN

For long time, studies on ectomycorrhiza (ECM) have been limited by inefficient expression of fluorescent proteins (FPs) in the fungal partner. To convert this situation, we have evaluated the basic requirements of FP expression in the model ECM homobasidiomycete Laccaria bicolor and established eGFP and mCherry as functional FP markers. Comparison of intron-containing and intronless FP-expression cassettes confirmed that intron-processing is indispensable for efficient FP expression in Laccaria. Nuclear FP localization was obtained via in-frame fusion of FPs between the intron-containing genomic gene sequences of Laccaria histone H2B, while cytosolic FP expression was produced by incorporating the intron-containing 5' fragment of the glyceraldehyde-3-phosphate dehydrogenase encoding gene. In addition, we have characterized the consensus Kozak sequence of strongly expressed genes in Laccaria and demonstrated its boosting effect on transgene mRNA accumulation. Based on these results, an Agrobacterium-mediated transformation compatible plasmid set was designed for easy use of FPs in Laccaria. The four cloning plasmids presented here allow fast and highly flexible construction of C-terminal in-frame fusions between the sequences of interest and the two FPs, expressed either from the endogenous gene promoter, allowing thus evaluation of the native regulation modes of the gene under study, or alternatively, from the constitutive Agaricus bisporus gpdII promoter for enhanced cellular protein localization assays. The molecular tools described here for cell-biological studies in Laccaria can also be exploited in studies of other biotrophic or saprotrophic basidiomycete species susceptible to genetic transformation.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Laccaria/genética , Proteínas Luminiscentes/genética , Plásmidos/genética , Proteínas Recombinantes de Fusión/genética , Agrobacterium/genética , Basidiomycota/genética , Núcleo Celular/genética , Citosol/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Histonas/genética , Laccaria/metabolismo , Proteínas Luminiscentes/metabolismo , Microorganismos Modificados Genéticamente , Microscopía Fluorescente , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética , Proteína Fluorescente Roja
7.
Front Plant Sci ; 10: 1101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611886

RESUMEN

Tension wood (TW) in hybrid aspen trees forms on the upper side of displaced stems to generate a strain that leads to uplifting of the stem. TW is characterized by increased cambial growth, reduced vessel frequency and diameter, and the presence of gelatinous, cellulose-rich (G-)fibers with its microfibrils oriented parallel to the fiber cell axis. Knowledge remains limited about the molecular regulators required for the development of this special xylem tissue with its characteristic morphological, anatomical, and chemical features. In this study, we use transgenic, ethylene-insensitive (ETI) hybrid aspen trees together with time-lapse imaging to show that functional ethylene signaling is required for full uplifting of inclined stems. X-ray diffraction and Raman microspectroscopy of TW in ETI trees indicate that, although G-fibers form, the cellulose microfibril angle in the G-fiber S-layer is decreased, and the chemical composition of S- and G-layers is altered than in wild-type TW. The characteristic asymmetric growth and reduction of vessel density is suppressed during TW formation in ETI trees. A genome-wide transcriptome profiling reveals ethylene-dependent genes in TW, related to cell division, cell wall composition, vessel differentiation, microtubule orientation, and hormone crosstalk. Our results demonstrate that ethylene regulates transcriptional responses related to the amount of G-fiber formation and their properties (chemistry and cellulose microfibril angle) during TW formation. The quantitative and qualitative changes in G-fibers are likely to contribute to uplifting of stems that are displaced from their original position.

9.
New Phytol ; 224(4): 1585-1599, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31125440

RESUMEN

Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.


Asunto(s)
Populus/citología , Factor de Transcripción AP-2/metabolismo , Xilema/citología , Pared Celular/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Transducción de Señal , Factor de Transcripción AP-2/genética , Madera/química , Madera/citología , Difracción de Rayos X
10.
Front Plant Sci ; 9: 272, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593753

RESUMEN

Thickening of tree stems is the result of secondary growth, accomplished by the meristematic activity of the vascular cambium. Secondary growth of the stem entails developmental cascades resulting in the formation of secondary phloem outwards and secondary xylem (i.e., wood) inwards of the stem. Signaling and transcriptional reprogramming by the phytohormone ethylene modifies cambial growth and cell differentiation, but the molecular link between ethylene and secondary growth remains unknown. We addressed this shortcoming by analyzing expression profiles and co-expression networks of ethylene pathway genes using the AspWood transcriptome database which covers all stages of secondary growth in aspen (Populus tremula) stems. ACC synthase expression suggests that the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is synthesized during xylem expansion and xylem cell maturation. Ethylene-mediated transcriptional reprogramming occurs during all stages of secondary growth, as deduced from AspWood expression profiles of ethylene-responsive genes. A network centrality analysis of the AspWood dataset identified EIN3D and 11 ERFs as hubs. No overlap was found between the co-expressed genes of the EIN3 and ERF hubs, suggesting target diversification and hence independent roles for these transcription factor families during normal wood formation. The EIN3D hub was part of a large co-expression gene module, which contained 16 transcription factors, among them several new candidates that have not been earlier connected to wood formation and a VND-INTERACTING 2 (VNI2) homolog. We experimentally demonstrated Populus EIN3D function in ethylene signaling in Arabidopsis thaliana. The ERF hubs ERF118 and ERF119 were connected on the basis of their expression pattern and gene co-expression module composition to xylem cell expansion and secondary cell wall formation, respectively. We hereby establish data resources for ethylene-responsive genes and potential targets for EIN3D and ERF transcription factors in Populus stem tissues, which can help to understand the range of ethylene targeted biological processes during secondary growth.

11.
New Phytol ; 218(3): 999-1014, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29528503

RESUMEN

The phytohormone ethylene impacts secondary stem growth in plants by stimulating cambial activity, xylem development and fiber over vessel formation. We report the effect of ethylene on secondary cell wall formation and the molecular connection between ethylene signaling and wood formation. We applied exogenous ethylene or its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to wild-type and ethylene-insensitive hybrid aspen trees (Populus tremula × tremuloides) and studied secondary cell wall anatomy, chemistry and ultrastructure. We furthermore analyzed the transcriptome (RNA Seq) after ACC application to wild-type and ethylene-insensitive trees. We demonstrate that ACC and ethylene induce gelatinous layers (G-layers) and alter the fiber cell wall cellulose microfibril angle. G-layers are tertiary wall layers rich in cellulose, typically found in tension wood of aspen trees. A vast majority of transcripts affected by ACC are downstream of ethylene perception and include a large number of transcription factors (TFs). Motif-analyses reveal potential connections between ethylene TFs (Ethylene Response Factors (ERFs), ETHYLENE INSENSITIVE 3/ETHYLENE INSENSITIVE3-LIKE1 (EIN3/EIL1)) and wood formation. G-layer formation upon ethylene application suggests that the increase in ethylene biosynthesis observed during tension wood formation is important for its formation. Ethylene-regulated TFs of the ERF and EIN3/EIL1 type could transmit the ethylene signal.


Asunto(s)
Etilenos/metabolismo , Hibridación Genética , Populus/metabolismo , Transducción de Señal , Madera/metabolismo , Aminoácidos Cíclicos/farmacología , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Celulosa/metabolismo , Simulación por Computador , Genes de Plantas , Populus/genética , Populus/ultraestructura , Análisis de Componente Principal , Regiones Promotoras Genéticas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Agua/farmacología , Madera/efectos de los fármacos , Madera/crecimiento & desarrollo , Madera/ultraestructura , Xilema/efectos de los fármacos , Xilema/metabolismo , Xilema/ultraestructura
13.
Plant Physiol ; 169(1): 890-902, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26084921

RESUMEN

Root systems of host trees are known to establish ectomycorrhizae (ECM) interactions with rhizospheric fungi. This mutualistic association leads to dramatic developmental modifications in root architecture, with the formation of numerous short and swollen lateral roots ensheathed by a fungal mantle. Knowing that auxin plays a crucial role in root development, we investigated how auxin metabolism, signaling, and response are affected in poplar (Populus spp.)-Laccaria bicolor ECM roots. The plant-fungus interaction leads to the arrest of lateral root growth with simultaneous attenuation of the synthetic auxin response element DR5. Measurement of auxin-related metabolites in the free-living partners revealed that the mycelium of L. bicolor produces high concentrations of the auxin indole-3-acetic acid (IAA). Metabolic profiling showed an accumulation of IAA and changes in the indol-3-pyruvic acid-dependent IAA biosynthesis and IAA conjugation and degradation pathways during ECM formation. The global analysis of auxin response gene expression and the regulation of AUXIN SIGNALING F-BOX PROTEIN5, AUXIN/IAA, and AUXIN RESPONSE FACTOR expression in ECM roots suggested that symbiosis-dependent auxin signaling is activated during the colonization by L. bicolor. Taking all this evidence into account, we propose a model in which auxin signaling plays a crucial role in the modification of root growth during ECM formation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Laccaria/fisiología , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Populus/microbiología , Transducción de Señal , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Laccaria/efectos de los fármacos , Metaboloma/efectos de los fármacos , Modelos Biológicos , Análisis Multivariante , Micorrizas/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Populus/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Nat Commun ; 6: 6279, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25703994

RESUMEN

The mutualistic association of roots with ectomycorrhizal fungi promotes plant health and is a hallmark of boreal and temperate forests worldwide. In the pre-colonization phase, before direct contact, lateral root (LR) production is massively stimulated, yet little is known about the signals exchanged during this step. Here, we identify sesquiterpenes (SQTs) as biologically active agents emitted by Laccaria bicolor while interacting with Populus or Arabidopsis. We show that inhibition of fungal SQT production by lovastatin strongly reduces LR proliferation and that (-)-thujopsene, a low-abundance SQT, is sufficient to stimulate LR formation in the absence of the fungus. Further, we show that the ectomycorrhizal ascomycote, Cenococcum geophilum, which cannot synthesize SQTs, does not promote LRs. We propose that the LR-promoting SQT signal creates a win-win situation by enhancing the root surface area for plant nutrient uptake and by improving fungal access to plant-derived carbon via root exudates.


Asunto(s)
Laccaria/fisiología , Micorrizas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Populus/crecimiento & desarrollo , Sesquiterpenos , Arabidopsis , Ascomicetos , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Superóxidos/metabolismo , Simbiosis , Compuestos Orgánicos Volátiles
15.
Nat Protoc ; 10(2): 217-40, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25569330

RESUMEN

Raman and Fourier transform IR (FTIR) microspectroscopic images of biological material (tissue sections) contain detailed information about their chemical composition. The challenge lies in identifying changes in chemical composition, as well as locating and assigning these changes to different conditions (pathology, anatomy, environmental or genetic factors). Multivariate data analysis techniques are ideal for decrypting such information from the data. This protocol provides a user-friendly pipeline and graphical user interface (GUI) for data pre-processing and unmixing of pixel spectra into their contributing pure components by multivariate curve resolution-alternating least squares (MCR-ALS) analysis. The analysis considers the full spectral profile in order to identify the chemical compounds and to visualize their distribution across the sample to categorize chemically distinct areas. Results are rapidly achieved (usually <30-60 min per image), and they are easy to interpret and evaluate both in terms of chemistry and biology, making the method generally more powerful than principal component analysis (PCA) or heat maps of single-band intensities. In addition, chemical and biological evaluation of the results by means of reference matching and segmentation maps (based on k-means clustering) is possible.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Análisis Multivariante , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Animales , Islotes Pancreáticos/química , Análisis de los Mínimos Cuadrados , Ratones Endogámicos C57BL , Populus/química , Interfaz Usuario-Computador , Xilema/química
16.
Nat Commun ; 4: 2625, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24129639

RESUMEN

The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Vacuolas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacología , Transporte Biológico , Pared Celular/efectos de los fármacos , Pared Celular/genética , Pared Celular/ultraestructura , Redes Reguladoras de Genes , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/farmacología , Mutación , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo
17.
New Phytol ; 200(2): 511-522, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23815789

RESUMEN

Ethylene Response Factors (ERFs) are a large family of transcription factors that mediate responses to ethylene. Ethylene affects many aspects of wood development and is involved in tension wood formation. Thus ERFs could be key players connecting ethylene action to wood development. We identified 170 gene models encoding ERFs in the Populus trichocarpa genome. The transcriptional responses of ERF genes to ethylene treatments were determined in stem tissues of hybrid aspen (Populus tremula × tremuloides) by qPCR. Selected ethylene-responsive ERFs were overexpressed in wood-forming tissues and characterized for growth and wood chemotypes by FT-IR. Fifty ERFs in Populus showed more than five-fold increased transcript accumulation in response to ethylene treatments. Twenty-six ERFs were selected for further analyses. A majority of these were induced during tension wood formation. Overexpression of ERFs 18, 21, 30, 85 and 139 in wood-forming tissues of hybrid aspen modified the wood chemotype. Moreover, overexpression of ERF139 caused a dwarf-phenotype with altered wood development, and overexpression of ERF18, 34 and 35 slightly increased stem diameter. We identified ethylene-induced ERFs that respond to tension wood formation, and modify wood formation when overexpressed. This provides support for their role in ethylene-mediated regulation of wood development.


Asunto(s)
Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Populus/genética , Secuencia de Aminoácidos , Aminoácidos Cíclicos/farmacología , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Populus/anatomía & histología , Populus/crecimiento & desarrollo , Populus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/anatomía & histología , Madera/genética , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/anatomía & histología , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
18.
Plant Signal Behav ; 5(7): 864-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20448463

RESUMEN

Lateral root (LR) stimulation during early signal exchange between plant roots and ectomycorrhizal (ECM) fungi has recently been shown to be achieved by modulation of auxin gradients. We suggested that this modulation could occur through altered polar auxin transport (PAT) and through activation of auxin signalling pathways in the root. However, it remains unclear, which fungal molecules alter auxin pathways inside the plant partner. It has been suggested in previous studies that auxin released by the fungus could trigger observed plant responses during early signal exchange and later on during root colonization. Here we focus on the early interaction and we provide evidence for an alternative mechanism. Indeed, LR stimulation by the fungus in A. thaliana followed a totally different timing than with exogenously applied auxin. Furthermore, experimental conditions that excluded the exchange of soluble molecules while allowing exchange of volatile(s) between the plant and the fungus were sufficient for LR induction, therefore questioning the role of secreted fungal auxin. These data suggest that volatiles released by the fungus and sensed by the plant may act upstream of altered auxin signalling in the plant.

19.
Plant Physiol ; 151(4): 1991-2005, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19854859

RESUMEN

The early phase of the interaction between tree roots and ectomycorrhizal fungi, prior to symbiosis establishment, is accompanied by a stimulation of lateral root (LR) development. We aimed to identify gene networks that regulate LR development during the early signal exchanges between poplar (Populus tremula x Populus alba) and the ectomycorrhizal fungus Laccaria bicolor with a focus on auxin transport and signaling pathways. Our data demonstrated that increased LR development in poplar and Arabidopsis (Arabidopsis thaliana) interacting with L. bicolor is not dependent on the ability of the plant to form ectomycorrhizae. LR stimulation paralleled an increase in auxin accumulation at root apices. Blocking plant polar auxin transport with 1-naphthylphthalamic acid inhibited LR development and auxin accumulation. An oligoarray-based transcript profile of poplar roots exposed to molecules released by L. bicolor revealed the differential expression of 2,945 genes, including several components of polar auxin transport (PtaPIN and PtaAUX genes), auxin conjugation (PtaGH3 genes), and auxin signaling (PtaIAA genes). Transcripts of PtaPIN9, the homolog of Arabidopsis AtPIN2, and several PtaIAAs accumulated specifically during the early interaction phase. Expression of these rapidly induced genes was repressed by 1-naphthylphthalamic acid. Accordingly, LR stimulation upon contact with L. bicolor in Arabidopsis transgenic plants defective in homologs of these genes was decreased or absent. Furthermore, in Arabidopsis pin2, the root apical auxin increase during contact with the fungus was modified. We propose a model in which fungus-induced auxin accumulation at the root apex stimulates LR formation through a mechanism involving PtaPIN9-dependent auxin redistribution together with PtaIAA-based auxin signaling.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Ácidos Indolacéticos/metabolismo , Laccaria/fisiología , Micorrizas/fisiología , Populus/crecimiento & desarrollo , Populus/microbiología , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Laccaria/citología , Laccaria/genética , Laccaria/crecimiento & desarrollo , Modelos Biológicos , Mutación/genética , Micorrizas/citología , Micorrizas/efectos de los fármacos , Micorrizas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ftalimidas/farmacología , Populus/citología , Populus/genética , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...