Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 151(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205939

RESUMEN

Asymmetric cell divisions often generate daughter cells of unequal size in addition to different fates. In some contexts, daughter cell size asymmetry is thought to be a key input to specific binary cell fate decisions. An alternative possibility is that unequal division is a mechanism by which a variety of cells of different sizes are generated during embryonic development. We show here that two unequal cell divisions precede neuroblast formation in the C lineage of Caenorhabditis elegans. The equalisation of these divisions in a pig-1/MELK mutant background has little effect on neuroblast specification. Instead, we demonstrate that let-19/MDT13 is a regulator of the proneural basic helix-loop-helix transcription factor hlh-14/ASCL1 and find that both are required to concomitantly regulate the acquisition of neuroblast identity and neuroblast cell size. Thus, embryonic neuroblast cell size in this lineage is progressively regulated in parallel with identity by key neural cell fate regulators. We propose that key cell fate determinants have a previously unappreciated function in regulating unequal cleavage, and therefore cell size, of the progenitor cells whose daughter cell fates they then go on to specify.


Asunto(s)
Proteínas de Caenorhabditis elegans , Células-Madre Neurales , Animales , Proteínas de Caenorhabditis elegans/genética , Neuronas , Caenorhabditis elegans , División Celular , Tamaño de la Célula
2.
Nature ; 526(7573): 385-390, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26469050

RESUMEN

Sex differences in behaviour extend to cognitive-like processes such as learning, but the underlying dimorphisms in neural circuit development and organization that generate these behavioural differences are largely unknown. Here we define at the single-cell level-from development, through neural circuit connectivity, to function-the neural basis of a sex-specific learning in the nematode Caenorhabditis elegans. We show that sexual conditioning, a form of associative learning, requires a pair of male-specific interneurons whose progenitors are fully differentiated glia. These neurons are generated during sexual maturation and incorporated into pre-exisiting sex-shared circuits to couple chemotactic responses to reproductive priorities. Our findings reveal a general role for glia as neural progenitors across metazoan taxa and demonstrate that the addition of sex-specific neuron types to brain circuits during sexual maturation is an important mechanism for the generation of sexually dimorphic plasticity in learning.


Asunto(s)
Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Interneuronas/citología , Interneuronas/fisiología , Aprendizaje/fisiología , Neuroglía/citología , Caracteres Sexuales , Animales , Encéfalo/citología , División Celular , Separación Celular , Transdiferenciación Celular , Quimiotaxis , Condicionamiento Clásico/fisiología , Interneuronas/clasificación , Masculino , Vías Nerviosas , Células-Madre Neurales/citología , Neurogénesis , Plasticidad Neuronal , Reproducción/fisiología , Conducta Sexual Animal/fisiología , Maduración Sexual , Análisis de la Célula Individual
3.
Cell ; 155(3): 659-73, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243022

RESUMEN

The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT, is expressed in 38 of the 118 anatomically defined neuron classes of the C. elegans nervous system. We show that distinct cis-regulatory modules drive expression of eat-4/VGLUT in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in distinct combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Proteínas de Homeodominio/metabolismo , Neuronas/citología , Neuronas/metabolismo , Receptores de Glutamato/metabolismo , Animales , Caenorhabditis elegans/metabolismo , Ratones , Neuronas/clasificación , Células Receptoras Sensoriales/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Transporte Vesicular de Glutamato
4.
Genes Dev ; 27(12): 1391-405, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788625

RESUMEN

Terminal differentiation programs in the nervous system are encoded by cis-regulatory elements that control the expression of terminal features of individual neuron types. We decoded the regulatory information that controls the expression of five enzymes and transporters that define the terminal identity of all eight dopaminergic neurons in the nervous system of the Caenorhabditis elegans hermaphrodite. We show that the tightly coordinated, robust expression of these dopaminergic enzymes and transporters ("dopamine pathway") is ensured through a combinatorial cis-regulatory signature that is shared by all dopamine pathway genes. This signature is composed of an Ets domain-binding site, recognized by the previously described AST-1 Ets domain factor, and two distinct types of homeodomain-binding sites that act in a partially redundant manner. Through genetic screens, we identified the sole C. elegans Distalless/Dlx ortholog, ceh-43, as a factor that acts through one of the homeodomain sites to control both induction and maintenance of terminal dopaminergic fate. The second type of homeodomain site is a Pbx-type site, which is recognized in a partially redundant and neuron subtype-specific manner by two Pbx factors, ceh-20 and ceh-40, revealing novel roles of Pbx factors in the context of terminal neuron differentiation. Taken together, we revealed a specific regulatory signature and cognate, terminal selector-type transcription factors that define the entire dopaminergic nervous system of an animal. Dopaminergic neurons in the mouse olfactory bulb express a similar combinatorial transcription factor collective of Ets/Dlx/Pbx factors, suggesting deep phylogenetic conservation of dopaminergic regulatory programs.


Asunto(s)
Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/embriología , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Análisis Mutacional de ADN , Datos de Secuencia Molecular , Sistema Nervioso/citología , Elementos Reguladores de la Transcripción/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...