Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS One ; 19(6): e0303017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913673

RESUMEN

Clanis bilineata Walker (Lepidoptera: Sphingidae), a burgeoning edible insect, is experiencing rising demand in China and other regions. Despite this interest, larval production is currently constrained by the limitations of artificial production technologies, particularly the selection of optimal host plants. This study rigorously evaluated the performance of C. bilineatha larvae on four main host plants: round-leaf soybean, pointed-leaf soybean, black locust, and kudzu. Preference tests demonstrated that the larvae were most attracted to black locust (34.76 ± 4.65%), with subsequent preferences for kudzu (25.00 ± 6.12%), round-leaf soybean (23.17 ± 2.79%), and pointed-leaf soybean (14.02 ± 4.74%). No significant preference differences were noted between round-leaf soybean and either black locust or kudzu. In feeding assays, the larvae exhibited a marked preference for round-leaf soybean (37.36 ± 0.81 g, total feeding amount for larvae), followed by kudzu (37.26 ± 0.82 g), pointed-leaf soybean (35.38 ± 1.31 g), and black locust (28.53 ± 0.81 g). When the larvae were fed on round-leaf soybean, they exhibited significantly higher survival rate (39.33 ± 0.90%), body weight (9.75 ± 0.07 g), total biomass (383.43 ± 7.35 g), pupation rate (87.78 ± 1.73%), and egg production (189.80 ± 1.06 eggs/female) compared to other hosts. These findings uncovered that round-leaf soybean significantly enhances larval performance, suggesting its potential for improving C. bilineata larval production and sustainability in cultivation systems.


Asunto(s)
Glycine max , Larva , Animales , Larva/fisiología , Glycine max/parasitología , Lepidópteros/fisiología , Femenino
2.
Pest Manag Sci ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666388

RESUMEN

BACKGROUND: The green peach aphid (Myzus persicae) is a severe agricultural crop pest that has developed resistance to most current control methods, requiring the urgent development of novel strategies. Plant proteinase inhibitors (PINs) are small proteins that protect plants against pathogens and/or herbivores, likely by preventing efficient protein digestion. RESULTS: We identified 67 protease genes in the transcriptomes of three M. persicae lineages (USDA-Red, G002 and G006). Comparison of gene expression levels in aphid guts and whole aphids showed that several proteases, including a highly expressed serine protease, are significantly overexpressed in the guts. Furthermore, we identified three genes encoding serine protease inhibitors (SerPIN-II1, 2 and 3) in Nicotiana benthamiana, which is a nonpreferred host for M. persicae. Using virus-induced gene silencing (VIGS) with a tobacco rattle virus (TRV) vector and overexpression with a turnip mosaic virus (TuMV) vector, we demonstrated that N. benthamiana SerPIN-II1 and SerPIN-II2 cause reduced survival and growth, but do not affect aphid protein content. Likewise, SerPIN-II3 overexpression reduced survival and growth, and serpin-II3 knockout mutations, which we generated using CRISPR/Cas9, increased survival and growth. Protein content was significantly increased in aphids fed on SerPIN-II3 overexpressing plants, yet it was decreased in aphids fed on serpin-II3 mutants. CONCLUSION: Our results show that three PIN-IIs from N. benthamiana, a nonpreferred host plant, effectively inhibit M. persicae survival and growth, thereby representing a new resource for the development of aphid-resistant crop plants. © 2024 Society of Chemical Industry.

3.
Clin Neuroradiol ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489035

RESUMEN

PURPOSE: Cerebral hemodynamics are important for the management of intracranial atherosclerotic stenosis (ICAS). The quantitative flow ratio (QFR) is a novel angiography-derived index for assessing the functional relevance of ICAS without pressure wires and adenosine. Good diagnostic yield with the hyperemic fractional flow reserve (FFR) have been reported, while data on the comparison of QFR to FFR are scarce. METHODS: In this prospective study 56 patients with anterior circulation symptomatic ICAS who received endovascular treatment were included. The new method of computing QFR from a single angiographic view, i.e., the Murray law-based QFR (µQFR), was applied to the examined vessels. An artificial intelligence algorithm was developed to realize the automatic delineation of vascular contour. Pressure gradients were measured before and after treatment within the lesion vessel using a pressure guidewire and the FFR was calculated. RESULTS: There was a good correlation between µQFR and FFR. Preoperative FFR predicted DWI watershed infarction (FFR optimal cut-off level: 0.755). Preoperative µQFR predicted DWI watershed infarction (µQFR optimal cut-off level: 0.51). Preoperative FFR predicted CTP hypoperfusion (FFR best predictive value: 0.62). Preoperative µQFR predicted CTP hypoperfusion (µQFR best predictive value: 0.375). CONCLUSION: The µQFR based on DSA images can be used as an indicator to assess the functional status of the lesion in patients with ICAS.

4.
Aging Clin Exp Res ; 36(1): 30, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334839

RESUMEN

BACKGROUND: Widespread attention has been given to the detrimental effects of obesity on cognitive function. However, there is no evidence on the connection between low cognitive performance and the WWI (weight-adjusted waist index). This study looked into the connection between poor cognitive performance and the WWI in senior Americans. METHODS: A cross-sectional research study was carried out with information from the NHANES 2011-2014. With multivariate linear regression models, the pertinence between the WWI and low cognitive function in persons older than 60 years was examined. The nonlinear link was described using threshold effect analyses and fitted smoothed curves. Interaction tests and subgroup analysis were also conducted. RESULTS: The study had 2762 individuals in all, and subjects with higher WWI values were at greater risk for low cognitive function. In the completely adjusted model, the WWI was positively connected with low cognitive performance assessed by CERAD W-L (OR = 1.22, 95% CI 1.03-1.45, p = 0.0239), AFT (OR = 1.30, 95% CI 1.09-1.54, p = 0.0029), and DSST (OR = 1.59, 95% CI 1.30-1.94, p < 0.0001). The effect of each subgroup on the positive correlation between the WWI and low cognitive performance was not significant. The WWI and low cognitive performance as determined by CERAD W-L and AFT had a nonlinear connection (log-likelihood ratio < 0.05). CONCLUSION: Among older adults in the United States, the risk of low cognitive performance may be positively related to the WWI.


Asunto(s)
Cognición , Obesidad , Humanos , Anciano , Estudios Transversales , Encuestas Nutricionales , Modelos Lineales , Obesidad/epidemiología
5.
Neuropharmacology ; 247: 109812, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218579

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable disease involving motor neuron (MN) degeneration and is characterized by ongoing myasthenia and amyotrophia in adults. Most ALS patients die of respiratory muscle paralysis after an average of 3-5 years. Defective autophagy in MNs is considered an important trigger of ALS pathogenesis. Roflupram (ROF) was demonstrated to activate autophagy in microglial cells and exert protective effects against Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, our research aimed to investigate the efficacy and mechanism of ROF in treating ALS both in vivo and in vitro. We found that ROF could delay disease onset and prolong the survival of hSOD1-G93A transgenic mice. Moreover, ROF protected MNs in the anterior horn of the spinal cord, activated the AMPK/ULK1 signaling pathway, increased autophagic flow, and reduced SOD1 aggregation. In an NSC34 cell line stably transfected with hSOD1-G93A, ROF protected against cellular damage caused by hSOD1-G93A. Moreover, we have demonstrated that ROF inhibited gliosis in ALS model mice. Collectively, our study suggested that ROF is neuroprotective in ALS models and the AMPK/ULK1 signaling pathway is a potential therapeutic target in ALS, which increases autophagic flow and reduces SOD1 aggregation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Derivados del Benceno , Furanos , Ratones , Humanos , Animales , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Neuronas Motoras , Médula Espinal/metabolismo , Ratones Transgénicos , Autofagia , Modelos Animales de Enfermedad
6.
Brain Res Bull ; 204: 110792, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858681

RESUMEN

BACKGROUND: ANO1 is closely correlated with the activation of EGFR and CaMKII, while EGFR and CaMKII show low activation in amyotrophic lateral sclerosis (ALS) models. Therefore, we designed experiments to verify that ANO1 may play a protective role on motor neurons in ALS by activating EGFR and CaMKII. METHODS: The expression changes of ANO1, EGFR, CaMKII, pEGFR, and pCaMKII, cell survival status, and apoptosis were studied by western blot, real-time quantitative PCR, immunofluorescence, immunohistochemistry, CCK-8, and flow cytometry. The role of ANO1 in the ALS model by activating EGFR and CaMKII was studied by applying corresponding activators, inhibitors, gene silencing, and overexpression. RESULTS: In hSOD1G93A transgenic animals and cell lines, low expression of ANO1 and low activation of EGFR and CaMKII were identified. ANO1 expression decreased gradually with the progression of ALS. Overexpression of ANO1 in the hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice increased cell viability and decreased cell apoptosis. After the application of ANO1 inhibitor CaCC-inhA01 in hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice, EGFR activator EGF and CaMKII activator Carbachol, increased cell viability and reduced cell apoptosis. After ANO1 was overexpressed in the hSOD1G93A cell line and primary neurons of hSOD1G93A transgenic mice, EGFR inhibitor AEE788 and CaMKII inhibitor KN93 decreased cell viability and increased cell apoptosis. CONCLUSIONS: Our results suggest that ANO1 plays an important role in the survival of ALS motor neurons. ANO1 can increase cell activity and reduce apoptosis by activating EGFR and CaMKII signals.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Anoctamina-1 , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Canales de Cloruro , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
7.
Clin Transl Sci ; 16(10): 1923-1934, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37488744

RESUMEN

Acute kidney injury (AKI) is one of the common complications of pulmonary infections. However, nomograms predicting the risk of early-onset AKI in patients with pulmonary infections have not been comprehensively researched. In this study, 3278 patients with pulmonary infection were extracted from the Medical Information Mart for Intensive Care III (MIMIC-III) database. These patients were randomly divided into training and validation cohorts, with the training cohort used for model building and the validation cohort used for validation. Independent risk factors for patients with pulmonary infection were determined using the least absolute shrinkage and selection operator (LASSO) method and forward stepwise logistic regression, which revealed that 11 independent risk factors for AKI in patients with pulmonary infections were congestive heart failure (CHF), hypertension, diabetes, transcutaneous oxygen saturation (SpO2), 24-h urine output, white blood cells (WBC), serum creatinine (Scr), prothrombin time (PT), potential of hydrogen (PH), vasopressor use, and mechanical ventilation (MV) use. The nomogram was then constructed and validated. The area under the receiver operating characteristic curve (AUC) values of the nomogram were 0.770 (95% CI = 0.789-0.807) in the training cohort and 0.724 (95% CI = 0.754-0.784) in the validation cohort. High AUC values indicated the good discriminative ability of the nomogram, while the calibration curves and Hosmer-Lemeshow test results indicated that the nomogram was well-calibrated. Improvements in net reclassification index (NRI) and integrated discrimination improvement (IDI) values indicate that our nomogram was superior to the Simplified Acute Physiology Score (SAPS) II scoring system, and the decision-curve analysis (DCA) curves indicate that the nomogram has good clinical application. We established a risk-prediction model for AKI in patients with pulmonary infection, which has good discriminative power and is superior to the SAPS II scoring system. This model can provide clinical reference information for patients with this type of disease in the intensive care unit.


Asunto(s)
Lesión Renal Aguda , Unidades de Cuidados Intensivos , Humanos , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Cuidados Críticos , Calibración , Bases de Datos Factuales , Estudios Retrospectivos
8.
BMC Cardiovasc Disord ; 23(1): 293, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296380

RESUMEN

BACKGROUND: In recent years, the incidence of diabetes mellitus has been increasing annually, and cardiovascular complications secondary to diabetes mellitus have become the leading cause of death in diabetic patients. Considering the high incidence of type 2 diabetes (T2DM) combined with cardiovascular disease (CVD), some new hypoglycemic agents with cardiovascular protective effects have attracted extensive attention. However, the specific role of these regimens in ventricular remodeling remains unknown. The purpose of this network meta-analysis was to compare the effects of sodium glucose cotransporter type 2 inhibitor (SGLT-2i), glucagon-like peptide 1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 inhibitor (DPP-4i) on ventricular remodeling in patients with T2DM and/or CVD. METHODS: Articles published prior to 24 August 2022 were retrieved in four electronic databases: the Cochrane Library, Embase, PubMed, and Web of Science. This meta-analysis included randomized controlled trials (RCTs) and a small number of cohort studies. The differences in mean changes of left ventricular ultrasonic parameters between the treatment and control groups were compared. RESULTS: A total of 31 RCTs and 4 cohort studies involving 4322 patients were analyzed. GLP-1RA was more significantly associated with improvement in left ventricular end-systolic diameter (LVESD) [MD = -0.38 mm, 95% CI (-0.66, -0.10)] and LV mass index (LVMI) [MD = -1.07 g/m2, 95% CI (-1.71, -0.42)], but significantly decreased e' [MD = -0.43 cm/s 95% CI (-0.81, -0.04)]. DPP-4i was more strongly associated with improvement in e' [MD = 3.82 cm/s, 95% CI (2.92,4.7)] and E/e'[MD = -5.97 95% CI (-10.35, -1.59)], but significantly inhibited LV ejection fraction (LVEF) [MD = -0.89% 95% CI (-1.76, -0.03)]. SGLT-2i significantly improved LVMI [MD = -0.28 g/m2, 95% CI (-0.43, -0.12)] and LV end-diastolic diameter (LVEDD) [MD = -0.72 ml, 95% CI (-1.30, -0.14)] in the overall population, as well as E/e' and SBP in T2DM patients combined with CVD, without showing any negative effect on left ventricular function. CONCLUSION: The results of the network meta-analysis provided high certainty to suggest that SGLT-2i may be more effective in cardiac remodeling compared to GLP-1RA and DPP-4i. While GLP-1RA and DPP-4i may have a tendency to improve cardiac systolic and diastolic function respectively. SGLT-2i is the most recommended drug for reversing ventricular remodeling in this meta-analysis.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Metaanálisis en Red , Inhibidores de Proteasas/farmacología , Remodelación Ventricular
9.
BMC Pulm Med ; 23(1): 75, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890515

RESUMEN

BACKGROUND: Primary pulmonary choriocarcinoma (PPC) is a highly malignant intrapulmonary tumor with a notorious prognosis. Few clinical studies have been undertaken to investigate the clinical characteristics and prognosis of PPC. MATERIAL AND METHODS: We systematically conducted a retrospective analysis of patients with PPC in the literature published in PubMed and CNKI databases until March 31, 2022. The primary outcome was all-cause mortality. Survival curves were depicted using the Kaplan‒Meier method and compared using the stratified log-rank test. A Cox proportional hazards model was used to estimate the prognostic factors. RESULTS: A total of 68 patients were included, which consisted of 32 females and 36 males, with an average age of (44.5 ± 16.8) years old, ranging from 19 to 77 years. The clinical characteristics were mostly cough (49.2%), dyspnea (22.2%), hemoptysis (39.7%) and chest pain (39.7%). Kaplan‒Meier analysis showed that sex, age, hemoptysis, metastasis and treatment combining surgery with chemotherapy had a significant effect on survival. There were no effects on other outcomes. Furthermore, univariate and multivariable Cox regression analyses showed that the impact of the treatment combining surgery with chemotherapy on OS showed independent prognostic significance. CONCLUSION: PPC is a rare disease that lacks specific clinical features. Early diagnosis with optimal management is a significant goal. Surgery followed by adjuvant chemotherapy may be the best treatment for PPC.


Asunto(s)
Coriocarcinoma , Hemoptisis , Masculino , Embarazo , Femenino , Humanos , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Hemoptisis/etiología , Pronóstico , Modelos de Riesgos Proporcionales , Coriocarcinoma/diagnóstico , Coriocarcinoma/terapia , Coriocarcinoma/patología
10.
Cell Death Differ ; 30(2): 369-382, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36443440

RESUMEN

Ferroptosis is an iron-dependent cell death with the accumulation of lipid peroxidation and dysfunction of antioxidant systems. As the critical regulator, glutathione peroxidase 4 (GPX4) has been demonstrated to be down-regulated in amyotrophic lateral sclerosis (ALS). However, the mechanism of ferroptosis in ALS remains unclear. In this research, bioinformatics analysis revealed a high correlation between ALS, ferroptosis, and Speedy/RINGO cell cycle regulator family member A (SPY1). Lipid peroxidation of ferroptosis in hSOD1G93A cells and mice was generated by TFR1-imported excess free iron, decreased GSH, mitochondrial membrane dysfunction, upregulated ALOX15, and inactivation of GCH1, GPX4. SPY1 is a "cyclin-like" protein that has been proved to enhance the viability of hSOD1G93A cells by inhibiting DNA damage. In our study, the decreased expression of SPY1 in ALS was resulted from unprecedented ubiquitination degradation mediated by MDM2 (a nuclear-localized E3 ubiquitin ligase). Further, SPY1 was identified as a novel ferroptosis suppressor via alleviating lipid peroxidation produced by dysregulated GCH1/BH4 axis (a resistance axis of ferroptosis) and transferrin receptor protein 1 (TFR1)-induced iron. Additionally, neuron-specific overexpression of SPY1 significantly delayed the occurrence and prolonged the survival in ALS transgenic mice through the above two pathways. These results suggest that SPY1 is a novel target for both ferroptosis and ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ferroptosis , GTP Ciclohidrolasa , Receptores de Transferrina , Animales , Ratones , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , GTP Ciclohidrolasa/metabolismo , Hierro/metabolismo , Peroxidación de Lípido/fisiología , Ratones Transgénicos , Neuronas Motoras/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Proteínas de Ciclo Celular/metabolismo
11.
Plant Biotechnol J ; 21(4): 754-768, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36577653

RESUMEN

RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.


Asunto(s)
Áfidos , Animales , Áfidos/genética , Interferencia de ARN , Plantas Modificadas Genéticamente/genética , Secuencia de Bases , Nicotiana/genética
12.
J Chem Ecol ; 48(7-8): 628-640, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35687218

RESUMEN

The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.


Asunto(s)
Escarabajos , Octopamina , Animales , Escarabajos/fisiología , Femenino , Masculino , Mianserina , Octopamina/farmacología , Oviposición , Reproducción
13.
Plant Mol Biol ; 109(4-5): 505-522, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34586580

RESUMEN

KEY MESSAGE: Nicotiana benthamiana acylsugar acyltransferase (ASAT) is required for protection against desiccation and insect herbivory. Knockout mutations provide a new resource for investigation of plant-aphid and plant-whitefly interactions. Nicotiana benthamiana is used extensively as a transient expression platform for functional analysis of genes from other species. Acylsugars, which are produced in the trichomes, are a hypothesized cause of the relatively high insect resistance that is observed in N. benthamiana. We characterized the N. benthamiana acylsugar profile, bioinformatically identified two acylsugar acyltransferase genes, ASAT1 and ASAT2, and used CRISPR/Cas9 mutagenesis to produce acylsugar-deficient plants for investigation of insect resistance and foliar water loss. Whereas asat1 mutations reduced accumulation, asat2 mutations caused almost complete depletion of foliar acylsucroses. Three hemipteran and three lepidopteran herbivores survived, gained weight, and/or reproduced significantly better on asat2 mutants than on wildtype N. benthamiana. Both asat1 and asat2 mutations reduced the water content and increased leaf temperature. Our results demonstrate the specific function of two ASAT proteins in N. benthamiana acylsugar biosynthesis, insect resistance, and desiccation tolerance. The improved growth of aphids and whiteflies on asat2 mutants will facilitate the use of N. benthamiana as a transient expression platform for the functional analysis of insect effectors and resistance genes from other plant species. Similarly, the absence of acylsugars in asat2 mutants will enable analysis of acylsugar biosynthesis genes from other Solanaceae by transient expression.


Asunto(s)
Hemípteros , Nicotiana , Aciltransferasas/metabolismo , Animales , Desecación , Herbivoria , Insectos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Agua
14.
Methods Mol Biol ; 2360: 105-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34495511

RESUMEN

Plant-mediated RNA interference (RNAi) can be used to reduce the growth of insect pests, including Myzus persicae (green peach aphid), a prolific pest of numerous dicot crop species. In one approach, viruses that have been engineered to carry an aphid gene fragment are used to infect plants and thereby silence target gene expression in the aphids feeding on these plants, a process called virus-induced gene silencing, or VIGS. Tobacco Rattle Virus (TRV) in the model plant, Nicotiana benthamiana, was the first of many VIGS systems that have been developed for different plant species. In this chapter, we describe a method for silencing M. persicae gene expression using an established TRV-VIGS vector that infects and spreads in N. benthamiana. The two parts of the TRV genome, RNA1 and RNA2, have been cloned into Agrobacterium T-DNA vectors for initiation of plant infections. The RNA2 construct is modified with a Gateway-compatible cloning site to allow insertion of aphid genes. When feeding on TRV-infected N. benthamiana plants, aphids ingest dsRNAs that silence specific target genes. TRV-VIGS of aphid genes allows rapid identification of essential gene targets that can be used for the control of M. persicae by this and other RNAi methods.


Asunto(s)
Áfidos , Prunus persica , Animales , Áfidos/genética , Virus de Plantas/genética , Interferencia de ARN , Nicotiana/genética
15.
Int J Biol Macromol ; 193(Pt A): 8-18, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673107

RESUMEN

Pheromone binding proteins (PBPs), a subfamily of the odorant binding proteins (OBPs), capture and transfer sex pheromones across the sensillum lymph to pheromone receptors and initiate insect courtship and mating. In this study, we functionally characterized ten OBPs from the black chafer, Holotrichia oblita (HoblOBPs), among which six HoblOBPs (HoblOBP2, 4, 5, 8, 9 and 24) were shown to recognize sex pheromones using electroantennography assays (EAG) and in vitro fluorescence competitive binding assays. Insect tropism to sex pheromones was significantly reduced after those genes were knocked down in vivo, e.g. HoblOBP24 RNAi reduced the tropism of H. oblita to methyl glycinate by 34%. Furthermore, molecular docking revealed key residues for the binding of the six HoblOBPs with sex pheromones. And hydrogen bonds and hydrophobic forces were shown to be the main forces in the binding of the six HoblOBPs and their sex pheromone ligands. Our study characterized six H. oblita PBPs and their binding abilities to sex pheromone ligands. The results will improve our understanding on the olfactory mechanisms that H. oblita utilizes to recognize sex pheromones, and will promote the development of novel strategies for controlling H. oblita and other insect pests.


Asunto(s)
Escarabajos/metabolismo , Proteínas de Insectos/metabolismo , Receptores Odorantes/metabolismo , Atractivos Sexuales/metabolismo , Animales , Ligandos , Unión Proteica
16.
Development ; 148(7)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33688076

RESUMEN

Activation of Wnt/ß-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized, but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome, we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3ß-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a crucial conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates.


Asunto(s)
Proteína Axina/genética , Proteína Axina/metabolismo , Erizos de Mar/embriología , Erizos de Mar/genética , Erizos de Mar/fisiología , Animales , Blastómeros/metabolismo , Embrión no Mamífero/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucógeno Sintasa Quinasa 3 beta/química , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Lytechinus , Strongylocentrotus purpuratus , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
17.
BMC Genomics ; 22(1): 192, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731017

RESUMEN

BACKGROUND: Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. RESULTS: In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. CONCLUSION: These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions.


Asunto(s)
Escarabajos , Insecticidas , Nematodos , Animales , Escarabajos/genética , Larva/genética , Transcriptoma
18.
Curr Opin Plant Biol ; 60: 102029, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33639339

RESUMEN

Expression of insect-targeted RNA interference (RNAi) constructs in transgenic plants is a promising approach for agricultural pest control. Compared to conventional chemical insecticides, RNAi target specificity is high and the potential for negative environmental effects is low. However, although numerous laboratory studies show insect growth inhibition by double stranded RNA or artificial microRNA, few of these constructs have been moved into commercial application as genetically engineered plants. Variation in RNA degradation, uptake, processing, and systemic transport in insects can influence interspecific and intraspecific differences in RNAi efficacy and the development of resistance to RNAi in agricultural settings. Further research is needed, both to identify optimal gene targets for efficient RNAi in pest species and to reduce the potential for off-target effects in beneficial species.


Asunto(s)
Insectos , ARN Bicatenario , Animales , Plantas Modificadas Genéticamente/genética , Interferencia de ARN , ARN de Planta/genética
19.
Cell Prolif ; 54(4): e13003, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33615605

RESUMEN

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway-mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4's effect and mechanism of action in ALS. METHODS: We analysed RNA levels by qRT-PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function. RESULTS: The expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR-9-5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB-mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A -induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway. CONCLUSIONS: PAK4 protects MN from degeneration by activating the anti-apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Neuronas Motoras/metabolismo , Superóxido Dismutasa-1/metabolismo , Quinasas p21 Activadas/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/mortalidad , Animales , Apoptosis/efectos de los fármacos , Proteína de Unión a CREB/antagonistas & inhibidores , Proteína de Unión a CREB/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/metabolismo , Mutagénesis Sitio-Dirigida , Fármacos Neuroprotectores/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa-1/genética , Tasa de Supervivencia , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/genética
20.
Pharmacol Res ; 165: 105457, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33515706

RESUMEN

Microglia-mediated neuroinflammatory response and neuron damage are considered as a self-propelling progressive cycle, being strongly implicated in the progression of neurodegeneration in amyotrophic lateral sclerosis (ALS). Diphenyl diselenide (DPDS), a simple organoselenium compound, has been known to possess multiple pharmacological properties. The purpose of this study was to explore the neuroprotective effects of DPDS against microglia-mediated neuroinflammatory injury in ALS models. We found that DPDS pretreatment inhibited LPS-induced activation of IκB/NF-κB pathway and subsequent release of proinflammatory factors from activated primary hSOD1G93A microglia. Moreover, DPDS suppressed NLRP3 inflammasome activation by decreasing protein nitration via reduction in NO and ROS levels, whose low levels are related to NF-κB inhibition responsible for iNOS and NOX2 down-regulations, respectively. Notably, DPDS-mediated ROS attenuation was not linked to Nrf2 activation in this cellular model. Furthermore, in the absence of activated microglia, DPDS has no significant effect on the individual hSOD1G93A-NSC34 cells; however, in in vitro neuron-microglia conditional culture and co-culture experiments, DPDS protected motor neurons from neurotoxic damage caused by LPS or BzATP-stimulated microglia activation. Above observations suggest that DPDS-afforded neuroprotection is linked to inhibition of microglia-mediated neuroinflammation in ALS, which was further verified in vivo as shown by improvements of motor deficits, prolonged survival, and reduction of motor neuron loss and reactive microgliosis in hSOD1G93A transgenic mouse. Altogether, our results show that DPDS elicited neuroprotection in ALS models through inactivation of microglia by inhibiting IκB/NF-κB pathway and NLRP3 inflammasome activation, suggesting that DPDS may be a promising candidate for potential therapy for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/prevención & control , Derivados del Benceno/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Microglía/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Compuestos de Organoselenio/uso terapéutico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Derivados del Benceno/farmacología , Línea Celular , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microglía/metabolismo , Neuronas Motoras/metabolismo , Fármacos Neuroprotectores/farmacología , Compuestos de Organoselenio/farmacología , Superóxido Dismutasa-1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...