Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Quant Imaging Med Surg ; 13(8): 4995-5011, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37581073

RESUMEN

Background: This study investigates whether deep learning radiomics of conventional ultrasound images can predict preoperative axillary lymph node (ALN) status in patients with clinical stages T1-2 breast cancer (BC). Methods: This study retrospectively analyzed the preoperative ultrasound data of 892 patients with BC, who were classified into training (n=535), validation (n=178), and test (n=179) cohorts. Linear combinations of the selected features were weighted by their coefficients to obtain the predicted score. Then, deep learning radiomic features were extracted from the ultrasound images to evaluate the ALN status. Receiver-operating characteristic curves were drawn, followed by the calculation of the area under the curve (AUC) to assess the accuracy of the prediction model in predicting axillary lymph node metastasis (ALNM) in the three cohorts. Results: Deep learning radiomics combined with radiomics and clinical parameters was the optimal diagnostic predictor of the ALN status in the absence and presence of ALNM, with the AUC of 0.920 (95% confidence interval: 0.872 and 0.968, respectively). Additionally, this combination could also differentiate low-load ALNM [N + (1-2)] from heavy-load ALNM with ≥3 positive nodes [N + (≥3)] in the test cohort, with the AUC of 0.819 (95% confidence interval: 0.568 and 1.00, respectively). Conclusions: Conclusively, deep learning radiomics of ultrasound images is a non-invasive approach to predicting preoperative ALNM in BC.

3.
J Am Chem Soc ; 145(8): 4746-4756, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36716227

RESUMEN

Facilitated by multiple stacking interactions between components, two kinds of metalla-links containing molecular Borromean rings (623 links) and head-to-tail cyclic [3]catenanes (613 links), as isomers, were constructed in high yield by introducing tri-µ-methoxyl-dinuclear complexes [(Cp*M)2(µ-OCH3)3][OTf] (M = RhIII or IrIII, Cp* = η5-pentamethylcyclopentadienyl, OTf = triflate) as unusual cationic guests during coordination-driven assembly. The topology of these intricate structures was controlled by strategically selecting two dipyridyl ligands that differ in their coordination orientations, as evidenced by X-ray crystallography and electrospray ionization-time-of-flight/mass spectrometry analysis. The behavior of the abovementioned metalla-links in solution was monitored and further studied by the detailed NMR techniques.

4.
Entropy (Basel) ; 24(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36010738

RESUMEN

Considering that the specific heat of the working fluid varies linearly with its temperature, this paper applies finite time thermodynamic theory and NSGA-II to conduct thermodynamic analysis and multi-objective optimization for irreversible porous medium cycle. The effects of working fluid's variable-specific heat characteristics, heat transfer, friction and internal irreversibility losses on cycle power density and ecological function characteristics are analyzed. The relationship between power density and ecological function versus compression ratio or thermal efficiency are obtained. When operating in the circumstances of maximum power density, the thermal efficiency of the porous medium cycle engine is higher and its size is less than when operating in the circumstances of maximum power output, and it is also more efficient when operating in the circumstances of maximum ecological function. The four objectives of dimensionless power density, dimensionless power output, thermal efficiency and dimensionless ecological function are optimized simultaneously, and the Pareto front with a set of solutions is obtained. The best results are obtained in two-objective optimization, targeting power output and thermal efficiency, which indicates that the optimal results of the multi-objective are better than that of one-objective.

5.
Front Cell Infect Microbiol ; 12: 883798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646743

RESUMEN

Background: The diagnosis and treatment of mixed vaginitis are more complicated than single pathogenic infections, and there may be adverse reactions and several contraindications to conventional antibiotic therapy. Therefore, this study aimed to evaluate the preliminary effects of Fufang Furong Effervescent Suppository for the management of aerobic vaginitis (AV) mixed with bacterial vaginosis (BV) using Accurate 16S absolute quantification sequencing (Accu16S). Methods: In the present randomized, blind, multi-center clinical trial, women (20 to 55 years) who had received a diagnosis of AV+BV were randomly assigned into clindamycin positive control (n = 41) and Fufang Furong Effervescent Suppository (n = 39) groups. The follow-up occurred in three time periods (V1: -2~0 days; V2: 15-17 days; V3: 40 ± 3 days). At each visit, two vaginal swabs, one for clinical evaluation and one for laboratory examination, were taken from each patient. The Nugent score, Donders' score, drug-related complications, recurrence rates, and microecological changes of vaginal swabs were assessed in the time three periods. Results: At baseline, the two groups were similar in frequency of presentation with vaginal burning, odor, abnormal discharge, and itching. No meaningful differences in Nugent and Donders' scores were detected between the two groups at stage V2 (Nugent: p = 0.67; Donders': p = 0.85) and V3 (Nugent: p = 0.97; Donders: p = 0.55). The Furong group presented fewer complications compared to the Clindamycin group. However, this difference was not statistically significant (p = 0.15). Additionally, Accu16S indicated that the total abundance of bacteria in both groups sharply decreased in stage V2, but slightly increased in V3. In stage V3, the absolute abundance of Lactobacillus in the Furong group was considerably higher compared to untreated samples (p < 0.05). On the other hand, no momentous increase was detected in the Clindamycin group (p > 0.05). Conclusion: Fufang Furong Effervescent Suppository can be as effective as clindamycin cream in the management of AV+BV while may restore the vagina microecosystem better.


Asunto(s)
Vaginitis , Vaginosis Bacteriana , Vulvovaginitis , Clindamicina/uso terapéutico , Femenino , Humanos , Vagina/microbiología , Vaginitis/diagnóstico , Vaginitis/tratamiento farmacológico , Vaginitis/microbiología , Vaginosis Bacteriana/diagnóstico , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología
6.
Entropy (Basel) ; 24(10)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37420423

RESUMEN

Based on the quadrilateral heat generation body (HGB) proposed by previous literature, the multi-objective constructal design is performed. Firstly, the constructal design is performed by minimizing the complex function composed of the maximum temperature difference (MTD) and entropy generation rate (EGR), and the influence of the weighting coefficient (a0) on the optimal constructal is studied. Secondly, the multi-objective optimization (MOO) with the MTD and EGR as optimization objectives is performed, and the Pareto frontier with an optimal set is obtained by using NSGA-II. The optimization results are selected from the Pareto frontier through LINMAP, TOPSIS, and Shannon Entropy decision methods, and the deviation indexes of different objectives and decision methods are compared. The research of the quadrilateral HGB shows that the optimal constructal can be gained by minimizing the complex function with the objectives of the MTD and the EGR, the complex function after the constructal design is reduced by up to 2% compared with its initial value, and the complex function of the two reflects the compromise between the maximum thermal resistance and the irreversible loss of heat transfer. The Pareto frontier includes the optimization results of different objectives, and when the weighting coefficient of a complex function changes, the optimization results obtained by minimizing the complex function will also be distributed in the Pareto frontier. The deviation index of the TOPSIS decision method is 0.127, which is the lowest one among the discussed decision methods.

7.
Entropy (Basel) ; 24(10)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37420490

RESUMEN

Based on the existing model of an irreversible magnetohydrodynamic cycle, this paper uses finite time thermodynamic theory and multi-objective genetic algorithm (NSGA-II), introduces heat exchanger thermal conductance distribution and isentropic temperature ratio of working fluid as optimization variables, and takes power output, efficiency, ecological function, and power density as objective functions to carry out multi-objective optimization with different objective function combinations, and contrast optimization results with three decision-making approaches of LINMAP, TOPSIS, and Shannon Entropy. The results indicate that in the condition of constant gas velocity, deviation indexes are 0.1764 acquired by LINMAP and TOPSIS approaches when four-objective optimization is performed, which is less than that (0.1940) of the Shannon Entropy approach and those (0.3560, 0.7693, 0.2599, 0.1940) for four single-objective optimizations of maximum power output, efficiency, ecological function, and power density, respectively. In the condition of constant Mach number, deviation indexes are 0.1767 acquired by LINMAP and TOPSIS when four-objective optimization is performed, which is less than that (0.1950) of the Shannon Entropy approach and those (0.3600, 0.7630, 0.2637, 0.1949) for four single-objective optimizations, respectively. This indicates that the multi-objective optimization result is preferable to any single-objective optimization result.

8.
Entropy (Basel) ; 24(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37420511

RESUMEN

This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated temperature ratio x of working fluid and volume compression ratio λ as optimization variables, and used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives, namely, dimensionless shaft power output P¯s, braking thermal efficiency ηs, dimensionless efficient power E¯p and dimensionless power density P¯d. The optimal solutions of four-, three-, two-, and single-objective optimizations are reached by selecting the minimum deviation indexes D with the three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization results show that the D reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the Shannon Entropy strategy for four-objective optimization, while the Ds reached for single-objective optimizations at maximum P¯s, ηs, E¯p, and P¯d conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which are all bigger than 0.1683. This indicates that multi-objective optimization results are better when choosing appropriate decision-making strategies.

9.
Entropy (Basel) ; 23(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34682008

RESUMEN

Using finite-time thermodynamics, a model of an endoreversible Carnot cycle for a space power plant is established in this paper. The expressions of the cycle power output and thermal efficiency are derived. Using numerical calculations and taking the cycle power output as the optimization objective, the surface area distributions of three heat exchangers are optimized, and the maximum power output is obtained when the total heat transfer area of the three heat exchangers of the whole plant is fixed. Furthermore, the double-maximum power output is obtained by optimizing the temperature of a low-temperature heat sink. Finally, the influences of fixed plant parameters on the maximum power output performance are analyzed. The results show that there is an optimal temperature of the low-temperature heat sink and a couple of optimal area distributions that allow one to obtain the double-maximum power output. The results obtained have some guidelines for the design and optimization of actual space power plants.

10.
Entropy (Basel) ; 23(9)2021 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-34573828

RESUMEN

Based on the established model of the irreversible rectangular cycle in the previous literature, in this paper, finite time thermodynamics theory is applied to analyze the performance characteristics of an irreversible rectangular cycle by firstly taking power density and effective power as the objective functions. Then, four performance indicators of the cycle, that is, the thermal efficiency, dimensionless power output, dimensionless effective power, and dimensionless power density, are optimized with the cycle expansion ratio as the optimization variable by applying the nondominated sorting genetic algorithm II (NSGA-II) and considering four-objective, three-objective, and two-objective optimization combinations. Finally, optimal results are selected through three decision-making methods. The results show that although the efficiency of the irreversible rectangular cycle under the maximum power density point is less than that at the maximum power output point, the cycle under the maximum power density point can acquire a smaller size parameter. The efficiency at the maximum effective power point is always larger than that at the maximum power output point. When multi-objective optimization is performed on dimensionless power output, dimensionless effective power, and dimensionless power density, the deviation index obtained from the technique for order preference by similarity to an ideal solution (TOPSIS) decision-making method is the smallest value, which means the result is the best.

11.
Entropy (Basel) ; 23(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203548

RESUMEN

Applying finite time thermodynamics theory and the non-dominated sorting genetic algorithm-II (NSGA-II), thermodynamic analysis and multi-objective optimization of an irreversible Diesel cycle are performed. Through numerical calculations, the impact of the cycle temperature ratio on the power density of the cycle is analyzed. The characteristic relationships among the cycle power density versus the compression ratio and thermal efficiency are obtained with three different loss issues. The thermal efficiency, the maximum specific volume (the size of the total volume of the cylinder), and the maximum pressure ratio are compared under the maximum power output and the maximum power density criteria. Using NSGA-II, single-, bi-, tri-, and quadru-objective optimizations are performed for an irreversible Diesel cycle by introducing dimensionless power output, thermal efficiency, dimensionless ecological function, and dimensionless power density as objectives, respectively. The optimal design plan is obtained by using three solution methods, that is, the linear programming technique for multidimensional analysis of preference (LINMAP), the technique for order preferences by similarity to ideal solution (TOPSIS), and Shannon entropy, to compare the results under different objective function combinations. The comparison results indicate that the deviation index of multi-objective optimization is small. When taking the dimensionless power output, dimensionless ecological function, and dimensionless power density as the objective function to perform tri-objective optimization, the LINMAP solution is used to obtain the minimum deviation index. The deviation index at this time is 0.1333, and the design scheme is closer to the ideal scheme.

12.
J Int Med Res ; 49(4): 3000605211007737, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33892606

RESUMEN

OBJECTIVE: To investigate the clinical value of the peak strain dispersion (PSD) in evaluating left ventricular (LV) systolic synchrony in patients with rheumatoid arthritis (RA). METHODS: One hundred eleven patients with RA were divided into two groups according to their disease duration: <5 years (Group I, n = 60) and ≥5 years (Group II, n = 51). The control group comprised 57 healthy subjects without RA. All three groups were examined by transthoracic two-dimensional echocardiography. Traditional parameters were measured by conventional echocardiography. Two-dimensional speckle tracking imaging was used to analyze the PSD and LV global longitudinal strain (LVGLS). Related ultrasound and blood test results were analyzed and compared. RESULTS: The PSD gradually increased in the order of the control group, Group I, and Group II, and the difference among the groups was statistically significant. The LVGLS gradually decreased in the order of the control group, Group I, and Group II, and the difference among the groups was statistically significant. The PSD was negatively correlated with the LVGLS. CONCLUSIONS: LV systolic synchrony in patients with RA gradually decreases as the disease course progresses. The PSD can be used as a new reliable index to evaluate LV systolic synchrony.


Asunto(s)
Artritis Reumatoide , Disfunción Ventricular Izquierda , Artritis Reumatoide/diagnóstico por imagen , Progresión de la Enfermedad , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Humanos , Sístole , Disfunción Ventricular Izquierda/diagnóstico por imagen , Función Ventricular Izquierda
13.
Entropy (Basel) ; 23(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918144

RESUMEN

Using finite time thermodynamic theory, an irreversible steady-flow Lenoir cycle model is established, and expressions of power output and thermal efficiency for the model are derived. Through numerical calculations, with the different fixed total heat conductances (UT) of two heat exchangers, the maximum powers (Pmax), the maximum thermal efficiencies (ηmax), and the corresponding optimal heat conductance distribution ratios (uLP(opt)) and (uLη(opt)) are obtained. The effects of the internal irreversibility are analyzed. The results show that, when the heat conductances of the hot- and cold-side heat exchangers are constants, the corresponding power output and thermal efficiency are constant values. When the heat source temperature ratio (τ) and the effectivenesses of the heat exchangers increase, the corresponding power output and thermal efficiency increase. When the heat conductance distributions are the optimal values, the characteristic relationships of P-uL and η-uL are parabolic-like ones. When UT is given, with the increase in τ, the Pmax, ηmax, uLP(opt), and uLη(opt) increase. When τ is given, with the increase in UT, Pmax and ηmax increase, while uLP(opt) and uLη(opt) decrease.

14.
Entropy (Basel) ; 23(4)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807398

RESUMEN

Based on finite time thermodynamics, an irreversible combined thermal Brownian heat engine model is established in this paper. The model consists of two thermal Brownian heat engines which are operating in tandem with thermal contact with three heat reservoirs. The rates of heat transfer are finite between the heat engine and the reservoir. Considering the heat leakage and the losses caused by kinetic energy change of particles, the formulas of steady current, power output and efficiency are derived. The power output and efficiency of combined heat engine are smaller than that of single heat engine operating between reservoirs with same temperatures. When the potential filed is free from external load, the effects of asymmetry of the potential, barrier height and heat leakage on the performance of the combined heat engine are analyzed. When the potential field is free from external load, the effects of basic design parameters on the performance of the combined heat engine are analyzed. The optimal power and efficiency are obtained by optimizing the barrier heights of two heat engines. The optimal working regions are obtained. There is optimal temperature ratio which maximize the overall power output or efficiency. When the potential filed is subjected to external load, effect of external load is analyzed. The steady current decreases versus external load; the power output and efficiency are monotonically increasing versus external load.

15.
Entropy (Basel) ; 23(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652671

RESUMEN

An improved irreversible closed modified simple Brayton cycle model with one isothermal heating process is established in this paper by using finite time thermodynamics. The heat reservoirs are variable-temperature ones. The irreversible losses in the compressor, turbine, and heat exchangers are considered. Firstly, the cycle performance is optimized by taking four performance indicators, including the dimensionless power output, thermal efficiency, dimensionless power density, and dimensionless ecological function, as the optimization objectives. The impacts of the irreversible losses on the optimization results are analyzed. The results indicate that four objective functions increase as the compressor and turbine efficiencies increase. The influences of the latter efficiency on the cycle performances are more significant than those of the former efficiency. Then, the NSGA-II algorithm is applied for multi-objective optimization, and three different decision methods are used to select the optimal solution from the Pareto frontier. The results show that the dimensionless power density and dimensionless ecological function compromise dimensionless power output and thermal efficiency. The corresponding deviation index of the Shannon Entropy method is equal to the corresponding deviation index of the maximum ecological function.

16.
Extremophiles ; 25(1): 39-49, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33123748

RESUMEN

Halomonas alkalicola CICC 11012s can grow at pH 12.5, the highest pH at which the organisms in the genus Halomonas can grow. Genomic analysis reveals that H. alkalicola adapts to alkaline stress using a variety of adaptive strategies; however, the detailed mechanism for its growth at high-alkaline conditions has not been elucidated. Therefore, in this study, the adaptations of H. alkalicola in response to extreme alkaline stress were investigated. A sharp decrease of alkaliphilic tolerance was observed in mutants E. coli ΔEctonB and H. alkalicola ΔHatonB. Expressions of the gene clusters encoding TonB-dependent transport system and iron complex transport system in H. alkalicola grown under extreme alkaline conditions were markedly up-regulated. We then compared the intracellular ionic iron content and iron-chelating ability of mutant strain with those of wild-type strain to understand the influence of TonB-dependent transport system on the alkaline responses. The results indicated that the presence of TonB-dependent transport system increased the alkaline tolerance of H. alkalicola grown at high-alkaline conditions, but had no effects when the strain was grown at neutral pH and low-alkaline conditions. Meanwhile, the presence of this system increased the transport and accumulation of ionic irons to maintain intracellular metabolic homeostasis, which in turn could increase the tolerance of the strain to extreme alkaline conditions. Based on the results, we established a model representing the interactions between TonB-dependent transport system, alkaline tolerance, and intracellular ionic iron that could help deepen the understanding of the alkaline response mechanism of alkaliphilic bacteria.


Asunto(s)
Proteínas Bacterianas/genética , Halomonas/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/genética , Estrés Fisiológico , Álcalis , Proteínas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Halomonas/genética , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/metabolismo
17.
Entropy (Basel) ; 22(4)2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33286171

RESUMEN

Considering the finite time characteristic, heat transfer loss, friction loss and internal irreversibility loss, an air standard reciprocating heat-engine cycle model is founded by using finite time thermodynamics. The cycle model, which consists of two endothermic processes, two exothermic processes and two adiabatic processes, is well generalized. The performance parameters, including the power output and efficiency (PAE), are obtained. The PAE versus compression ratio relations are obtained by numerical computation. The impacts of variable specific heats ratio (SHR) of working fluid (WF) on universal cycle performances are analyzed and various special cycles are also discussed. The results include the PAE performance characteristics of various special cycles (including Miller, Dual, Atkinson, Brayton, Diesel and Otto cycles) when the SHR of WF is constant and variable (including the SHR varied with linear function (LF) and nonlinear function (NLF) of WF temperature). The maximum power outputs and the corresponding optimal compression ratios, as well as the maximum efficiencies and the corresponding optimal compression ratios for various special cycles with three SHR models are compared.

18.
Entropy (Basel) ; 22(4)2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33286249

RESUMEN

A heat conduction model with an arrow-shaped high thermal conductivity channel (ASHTCC) in a square heat generation body (SHGB) is established in this paper. By taking the minimum maximum temperature difference (MMTD) as the optimization goal, constructal designs of the ASHTCC are conducted based on single, two, and three degrees of freedom optimizations under the condition of fixed ASHTCC material. The outcomes illustrate that the heat conduction performance (HCP) of the SHGB is better when the structure of the ASHTCC tends to be flat. Increasing the thermal conductivity ratio and area fraction of the ASHTCC material can improve the HCP of the SHGB. In the discussed numerical examples, the MMTD obtained by three degrees of freedom optimization are reduced by 8.42% and 4.40%, respectively, compared with those obtained by single and two degrees of freedom optimizations. Therefore, three degrees of freedom optimization can further improve the HCP of the SHGB. Compared the HCPs of the SHGBs with ASHTCC and the T-shaped one, the MMTD of the former is reduced by 13.0%. Thus, the structure of the ASHTCC is proven to be superior to that of the T-shaped one. The optimization results gained in this paper have reference values for the optimal structure designs for the heat dissipations of various electronic devices.

19.
Entropy (Basel) ; 22(6)2020 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-33286413

RESUMEN

Constructal optimization of a plate condenser with fixed heat transfer rate and effective volume in ocean thermal energy conversion (OTEC) system is performed based on constructal theory. Optimizations of entropy generation rate ( S ˙ g ) in heat transfer process and total pumping power ( P sum ) due to friction loss are two conflicting objectives for a plate condenser. With the conventional optimization method, the plate condenser is designed by taking a composite function (CF) considering both S ˙ g and P sum as optimization objectives, and employing effective length, width, and effective number of heat transfer plates as design variables. Effects of structural parameters of the plate condenser and weighting coefficient of CF on design results are investigated. With a multi-objective genetic algorithm, the plate condenser is designed by simultaneously optimizing S ˙ g and P sum , and the Pareto optimal set is obtained. The results demonstrate that CFs after primary and twice-constructal optimizations are respectively reduced by 7.8% and 9.9% compared with the initial CF, and the effective volume of the plate condenser has a positive impact on the twice minimum CF. Furthermore, the Pareto optimal set can provide better selections for performance optimizations of plate condensers.

20.
Entropy (Basel) ; 22(6)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-33286449

RESUMEN

A theoretical model of an open combined cycle is researched in this paper. In this combined cycle, an inverse Brayton cycle is introduced into regenerative Brayton cycle by resorting to finite-time thermodynamics. The constraints of flow pressure drop and plant size are taken into account. Thirteen kinds of flow resistances in the cycle are calculated. On the one hand, four isentropic efficiencies are used to evaluate the friction losses in the blades and vanes. On the other hand, nine kinds of flow resistances are caused by the cross-section variances of flowing channels, which exist at the entrance of top cycle compressor (TCC), the entrance and exit of regenerator, the entrance and exit of combustion chamber, the exit of top cycle turbine, the exit of bottom cycle turbine, the entrance of heat exchanger, as well as the entrance of bottom cycle compressor (BCC). To analyze the thermodynamic indexes of power output, efficiency along with other coefficients, the analytical formulae of these indexes related to thirteen kinds of pressure drop losses are yielded. The thermodynamic performances are optimized by varying the cycle parameters. The numerical results reveal that the power output presents a maximal value when the air flow rate and entrance pressure of BCC change. In addition, the power output gets its double maximal value when the pressure ratio of TCC further changes. In the premise of constant flow rate of working fuel and invariant power plant size, the thermodynamic indexes can be optimized further when the flow areas of the components change. The effect of regenerator on thermal efficiency is further analyzed in detail. It is reported that better thermal efficiency can be procured by introducing the regenerator into the combined cycle in contrast with the counterpart without the regenerator as the cycle parameters change in the critical ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...