Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Endocrinol ; 70(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36394986

RESUMEN

Golgi protein 73 (GP73), also called Golgi membrane protein 1 (GOLM1), is a resident Golgi type II transmembrane protein and is considered as a serum marker for the detection of a variety of cancers. A recent work revealed the role of the secreted GP73 in stimulating liver glucose production and systemic glucose homeostasis. Since exaggerated hepatic glucose production plays a key role in the pathogenesis of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), GP73 may thus represent a potential therapeutic target for treating diabetic patients with pathologically elevated levels. Here, in this study, we found that the circulating GP73 levels were significantly elevated in T2DM and positively correlated with hemoglobin A1c. Notably, the aberrantly upregulated GP73 levels were indispensable for the enhanced protein kinase A signaling pathway associated with diabetes. In diet-induced obese mouse model, GP73 siRNA primarily targeting liver tissue was potently effective in alleviating abnormal glucose metabolism. Ablation of GP73 from whole animals also exerted a profound glucose-lowering effect. Importantly, neutralizing circulating GP73 improved glucose metabolism in streptozotocin (STZ) and high-fat diet/STZ-induced diabetic mice. We thus concluded that GP73 was a feasible therapeutic target for the treatment of diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/patología , Hígado/metabolismo , Glucosa/metabolismo , Homeostasis
2.
Sheng Wu Gong Cheng Xue Bao ; 38(6): 2322-2331, 2022 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-35786482

RESUMEN

Fatty liver disease is a common chronic liver disease which is mainly induced by abnormal lipid metabolism. To find out the effect of GP73 on lipid metabolism in the liver, we constructed a high GP73 expression liver model through a tail vein injection of AAV-GP73 into eight-week-old C57BL/6J mice. Liver lipid metabolomics analysis showed that lipids in the liver of mice, especially the triglycerides, were significantly increased. In addition, kyoto encyclopedia of genes and genomes enrichment analysis showed that GP73 altered lipid metabolites profile that may further disturb many signaling pathways related to cellular metabolism. The diseases linked to type II diabetes, non-alcoholic fatty liver disease (NAFLD) and choline metabolism in cancer cells were more likely to be dysregulated. Thus, GP73 may induce fatty liver by regulating lipid metabolism and promoting lipid accumulation in the liver.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos
3.
Nat Metab ; 4(1): 29-43, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992299

RESUMEN

Severe cases of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are associated with elevated blood glucose levels and metabolic complications. However, the molecular mechanisms for how SARS-CoV-2 infection alters glycometabolic control are incompletely understood. Here, we connect the circulating protein GP73 with enhanced hepatic gluconeogenesis during SARS-CoV-2 infection. We first demonstrate that GP73 secretion is induced in multiple tissues upon fasting and that GP73 stimulates hepatic gluconeogenesis through the cAMP/PKA signaling pathway. We further show that GP73 secretion is increased in cultured cells infected with SARS-CoV-2, after overexpression of SARS-CoV-2 nucleocapsid and spike proteins and in lungs and livers of mice infected with a mouse-adapted SARS-CoV-2 strain. GP73 blockade with an antibody inhibits excessive glucogenesis stimulated by SARS-CoV-2 in vitro and lowers elevated fasting blood glucose levels in infected mice. In patients with COVID-19, plasma GP73 levels are elevated and positively correlate with blood glucose levels. Our data suggest that GP73 is a glucogenic hormone that likely contributes to SARS-CoV-2-induced abnormalities in systemic glucose metabolism.


Asunto(s)
COVID-19/complicaciones , COVID-19/virología , Glucosa/metabolismo , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Proteínas de la Membrana/metabolismo , SARS-CoV-2 , Animales , Biomarcadores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ayuno , Expresión Génica , Gluconeogénesis/efectos de los fármacos , Gluconeogénesis/genética , Interacciones Huésped-Patógeno , Humanos , Hiperglucemia/sangre , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/sangre , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Especificidad de Órganos/genética
4.
Nat Commun ; 12(1): 7004, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853313

RESUMEN

The prevalence of non-obese nonalcoholic fatty liver disease (NAFLD) is increasing worldwide with unclear etiology and pathogenesis. Here, we show GP73, a Golgi protein upregulated in livers from patients with a variety of liver diseases, exhibits Rab GTPase-activating protein (GAP) activity regulating ApoB export. Upon regular-diet feeding, liver-GP73-high mice display non-obese NAFLD phenotype, characterized by reduced body weight, intrahepatic lipid accumulation, and gradual insulin resistance development, none of which can be recapitulated in liver-GAP inactive GP73-high mice. Common and specific gene expression signatures associated with GP73-induced non-obese NAFLD and high-fat diet (HFD)-induced obese NAFLD are revealed. Notably, metformin inactivates the GAP activity of GP73 and alleviates GP73-induced non-obese NAFLD. GP73 is pathologically elevated in NAFLD individuals without obesity, and GP73 blockade improves whole-body metabolism in non-obese NAFLD mouse model. These findings reveal a pathophysiological role of GP73 in triggering non-obese NAFLD and may offer an opportunity for clinical intervention.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de la Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/complicaciones , Fosfoproteínas/metabolismo , Animales , Apolipoproteína B-100/metabolismo , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Resistencia a la Insulina , Hígado/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Fosfoproteínas/genética , Transcriptoma
5.
Nat Metab ; 2(12): 1391-1400, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33244168

RESUMEN

Responsible for the ongoing coronavirus disease 19 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects host cells through binding of the viral spike protein (SARS-2-S) to the cell-surface receptor angiotensin-converting enzyme 2 (ACE2). Here we show that the high-density lipoprotein (HDL) scavenger receptor B type 1 (SR-B1) facilitates ACE2-dependent entry of SARS-CoV-2. We find that the S1 subunit of SARS-2-S binds to cholesterol and possibly to HDL components to enhance viral uptake in vitro. SR-B1 expression facilitates SARS-CoV-2 entry into ACE2-expressing cells by augmenting virus attachment. Blockade of the cholesterol-binding site on SARS-2-S1 with a monoclonal antibody, or treatment of cultured cells with pharmacological SR-B1 antagonists, inhibits HDL-enhanced SARS-CoV-2 infection. We further show that SR-B1 is coexpressed with ACE2 in human pulmonary tissue and in several extrapulmonary tissues. Our findings reveal that SR-B1 acts as a host factor that promotes SARS-CoV-2 entry and may help explain viral tropism, identify a possible molecular connection between COVID-19 and lipoprotein metabolism, and highlight SR-B1 as a potential therapeutic target to interfere with SARS-CoV-2 infection.


Asunto(s)
COVID-19/metabolismo , COVID-19/virología , Interacciones Huésped-Patógeno , Lipoproteínas HDL/metabolismo , SARS-CoV-2/fisiología , Receptores Depuradores de Clase B/metabolismo , Internalización del Virus , Línea Celular , Colesterol/metabolismo , Susceptibilidad a Enfermedades , Humanos , Unión Proteica , Receptores Virales , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo Viral , Acoplamiento Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...