Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 473: 134691, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38788584

RESUMEN

Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.

2.
Mol Neurobiol ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917301

RESUMEN

Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Triggering receptor expressed on myeloid cells 2 (TREM2) confers strong neuroprotective effects in PD by regulating the phenotype of microglia. Recent studies suggest that TREM2 regulates high glucose-induced microglial inflammation through the NLRP3 signaling pathway. This study aimed to investigate the effect of TREM2 on NLRP3 inflammasome activation and neuroinflammation in PD. Mice were injected with AAV-TREM2-shRNA into both sides of the substantia nigra using a stereotactic injection method, followed by intraperitoneal injection of MPTP to establish chronic PD mouse model. Behavioral assessments including the pole test and rotarod test were conducted to evaluate the effects of TREM2 deficiency on MPTP-induced motor dysfunction. Immunohistochemistry of TREM2 and tyrosine hydroxylase (TH), immunohistochemistry and immunofluorescence Iba1, Western blot of NLRP3 inflammasome and its downstream inflammatory factors IL-1ß and IL-18, and the key pyroptosis factors GSDMD and GSDMD-N were performed to explore the effect of TREM2 on NLRP3 inflammasome and neuroinflammation. In an in vitro experiment, lentivirus was used to interfere with the expression of TREM2 in BV2 microglia, and then lipopolysaccharide (LPS) and adenopterin nucleoside triphosphate (ATP) were used to stimulate inflammation to construct a cellular inflammation model. The expression differences of NLRP3 inflammasome and its components were detected by qPCR and Western blot. In vivo, TREM2 knockdown aggravated the loss of dopaminergic neuron and the decline of motor function. After TREM2 knockdown, the number of activated microglia was significantly increased, and the expression of cleaved caspase-1, NLRP3 inflammasome, IL-1ß, GSDMD, and GSDMD-N was increased. In vitro, TREM2 knockdown aggravated the inflammatory response of BV2 cells stimulated by LPS and promoted the activation of NLRP3 inflammasome through the NF-κB pathway. In addition, TREM2 knockdown also promoted the expression of TLR4/MyD88, an upstream factor of the NF-κB pathway. Our vivo and vitro data showed that TREM2 knockdown promoted NLRP3 inflammasome activation and downstream inflammatory response, promoted pyroptosis, and aggravated dopaminergic neuron loss. TREM2 acts as an anti-inflammatory in PD through the TLR4/MyD88/NF-κB pathway, which extends previous findings and supports the notion that TREM2 ameliorates neuroinflammation in PD.

3.
Biomed Pharmacother ; 138: 111407, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33765585

RESUMEN

Epithelial ovarian cancers (EOC) present as malignant tumors with high mortality in the female reproductive system diseases. Acquired resistance to paclitaxel (PTX), one of the first-line treatment of EOC, remains a therapeutic challenge. ClC-3, a member of the voltage-gated Cl- channels, plays an essential role in a variety of cellular activities, including chemotherapeutic resistance. Here, we demonstrated that the protein expression and channel function of ClC-3 was upregulated in PTX resistance A2780/PTX cells compared with its parental A2780 cells. The silence of ClC-3 expression by siRNA in A2780/PTX cells partly recovered the PTX sensitivity through restored the G2/M arrest and resumed the chloride channel blocked. ClC-3 siRNA both inhibited the expression of ClC-3 and ß-tubulin, whereas the ß-tubulin siRNA reduced the expression of itself only, without affecting the expression of ClC-3. Moreover, treatment of ClC-3 siRNA in A2780/PTX cells increased the polymerization ratio of ß-tubulin, and the possibility of proteins interaction between ClC-3 and ß-tubulin was existing. Take together, the over-expression of ClC-3 protein in PTX-resistance ovarian cancer cells promotes the combination of ClC-3 and ß-tubulin, which in turn increase the ration of free form and decrease the quota of the polymeric form of ß-tubulin, and finally reduce the sensitivity to PTX. Our findings elucidated a novel function of ClC-3 in regulating PTX resistance and ClC-3 could serve as a potential target to overcome the PTX resistance ovarian cancer.


Asunto(s)
Canales de Cloruro/biosíntesis , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Canales de Cloruro/química , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Polimerizacion/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Cell Biochem Funct ; 37(7): 486-493, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31368181

RESUMEN

Although the spontaneous chloride currents (SCC) have been well studied in the normal cells, its properties and roles in neoplasms cells are still unknown. Here, we found that the SCC was manifested in the poorly differentiated human nasopharyngeal carcinoma CNE-2Z cells, with some differences such as lower occurrence and bigger current density than those of the volume-activated chloride currents (VACC). NPPB, a chloride channel blocker, inhibited the SCC much stronger than the VACC. Down-regulation of chloride channel -3 (ClC-3), a volume and mechanically dependent ion channel, could significantly decrease the VACC, but not in SCC. The occurrence, latency, and mean density of the SCC were much lower in the normal nasopharyngeal NP69-SV40T cells than those in CNE-2Z cells. Our results demonstrated that the spontaneous electrical reactivity of neoplasm cells is higher than that of normal cells, which probably relates to their high physiological activity of neoplasm cells. SIGNIFICANCE OF THE STUDY: Spontaneous chloride currents (SCC) are well known in excitable tissues and regulate a variety of physiological and pathophysiological processes. During our researching on the volume-activated chloride currents (VACC) in human nasopharyngeal carcinoma CNE-2Z cells, SCC could be also observed with different properties from VACC. Meanwhile, the occurrence, latency, and mean density of the SCC were much higher in CNE-2Z cells than those in normal nasopharyngeal NP69-SV40T cells. Our results revealed the expression and characteristics of SCC in carcinoma cells and provided a preliminary experimental basis for further exploring the function of SCC in tumour cell biology.


Asunto(s)
Cloruros/metabolismo , Células Epiteliales/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Células Cultivadas , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...