Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 130: 155711, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38749074

RESUMEN

BACKGROUND: Lignin has attracted a lot of attention because it is non-toxic, renewable and biodegradable. Lignin nanoparticles (LNPs) have high specific surface area and specific surface charges. It provides LNPs with good antibacterial and antioxidant properties. LNPs preparation has become clear, however, the application remains in the early stages. PURPOSE: A review centric research has been conducted, reviewing existing literature to accomplish a basic understanding of the medical applications of LNPs. METHODS: Initially, we extensively counseled the heterogeneity of lignin from various sources. The size and morphology of LNPs from different preparation process were then discussed. Subsequently, we focused on the potential medical applications of LNPs, including drug delivery, wound healing, tissue engineering, and antibacterial agents. Lastly, we explained the significance of LNPs in terms of antibacterial, antioxidant and biocompatibility, especially highlighting the need for an integrated framework to understand a diverse range of medical applications of LNPs. RESULTS: We outlined the chemical structure of different type of lignin, and highlighted the advanced methods for lignin nanoparticles preparation. Moreover, we provided an in-depth review of the potential applications of lignin nanoparticles in various medical fields, especially in drug carriers, wound dressings, tissue engineering components, and antimicrobial agents. CONCLUSION: This review provides a detailed overview on the current state and progression of lignin nanoparticles for medical applications.

2.
Int J Biol Macromol ; 270(Pt 1): 132154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734331

RESUMEN

Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 µm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.


Asunto(s)
Emulsiones , Lignina , Aceite de Linaza , Oxidación-Reducción , Agua , Aceite de Linaza/química , Emulsiones/química , Lignina/química , Agua/química , Viscosidad , Carbohidratos/química , Ácido alfa-Linolénico/química , Tamaño de la Partícula
3.
Small ; : e2309756, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602191

RESUMEN

Control over particle size and shape heterogeneity is highly relevant to the design of photonic coatings and supracolloidal assemblies. Most developments in the area have relied on mineral and petroleum-derived polymers that achieve well-defined chemical and dimensional characteristics. Unfortunately, it is challenging to attain such control when considering renewable nanoparticles. Herein, a pathway toward selectable biobased particle size and physicochemical profiles is proposed. Specifically, lignin is fractionated, a widely available heterogeneous polymer that can be dissolved in aqueous solution, to obtain a variety of monodispersed particle fractions. A two-stage cascade and density gradient centrifugation that relieves the need for solvent pre-extraction or other pretreatments but achieves particle bins of uniform size (~60 to 860 nm and polydispersity, PDI<0.06, dynamic light scattering) along with characteristic surface chemical features is introduced. It is found that the properties and associated colloidal behavior of the particles are suitably classified in distinctive size populations, namely, i) nanoscale (50-100 nm), ii) photonic (100-300 nm) and iii) near-micron (300-1000 nm). The strong correlation that exists between size and physicochemical characteristics (molar mass, surface charge, bonding and functional groups, among others) is introduced as a powerful pathway to identify nanotechnological uses that benefit from the functionality and cost-effectiveness of biogenic particles.

4.
Phytomedicine ; 128: 155589, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608487

RESUMEN

BACKGROUND: Food products undergo a pronounced Maillard reaction (MR) during the cooking process, leading to the generation of substantial quantities of Maillard reaction products (MRPs). Within this category, advanced glycation end products (AGEs), acrylamide (AA), and heterocyclic amines (HAs) have been implicated as potential risk factors associated with the development of diseases. PURPOSE: To explore the effects of polyphenols, a class of bioactive compounds found in plants, on the inhibition of MRPs and related diseases. Previous research has mainly focused on their interactions with proteins and their effects on the gastrointestinal tract and other diseases, while fewer studies have examined their inhibitory effects on MRPs. The aim is to offer a scientific reference for future research investigating the inhibitory role of polyphenols in the MR. METHODS: The databases PubMed, Embase, Web of Science and The Cochrane Library were searched for appropriate research. RESULTS: Polyphenols have the potential to inhibit the formation of harmful MRPs and prevent related diseases. The inhibition of MRPs by polyphenols primarily occurs through the following mechanisms: trapping α-dicarbonyl compounds, scavenging free radicals, chelating metal ions, and preserving protein structure. Simultaneously, polyphenols exhibit the ability to impede the onset and progression of related diseases such as diabetes, atherosclerosis, cancer, and Alzheimer's disease through diverse pathways. CONCLUSION: This review presents that inhibition of polyphenols on Maillard reaction products and their induction of related diseases. Further research is imperative to enhance our comprehension of additional pathways affected by polyphenols and to fully uncover their potential application value in inhibiting MRPs.


Asunto(s)
Productos Finales de Glicación Avanzada , Reacción de Maillard , Polifenoles , Polifenoles/farmacología , Polifenoles/química , Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Humanos , Acrilamida/química , Enfermedad de Alzheimer/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Animales
5.
Food Res Int ; 174(Pt 1): 113566, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986519

RESUMEN

The rapid advancement of nanotechnology has opened up new avenues for applications in all stages of the food industry. Over the past decade, extensive research has emphasized that when nanoparticles (NPs) enter organisms, they spontaneously adsorbed biomolecules, leading to the formation of biocorona. This paper provided a detailed review of the process of biocorona formation in the food industry, including their classification and influencing factors. Additionally, various characterization methods to investigated the morphology and structure of biocoronas were introduced. As a real state of food industry nanoparticles in biological environments, the biocorona causes structural transformations of biomolecules bound to NPs, thus affecting their fate in the body. It can either promote or inhibit enzyme activity in the human environment, and may also positively or negatively affect the cellular uptake and toxicity of NPs. Since NPs present in the food industry will inevitably enter the human body, further investigations on biocoronas will offer valuable insights and perspectives on the safety of incorporating more NPs into the food industry.


Asunto(s)
Cuerpo Humano , Nanopartículas , Humanos , Nanopartículas/toxicidad , Nanopartículas/química , Industria de Alimentos
6.
Food Res Int ; 173(Pt 2): 113412, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803752

RESUMEN

Lotus seedpod oligomeric procyanidins (LSOPC) are potent inhibitors of advanced glycation end products (AGEs), whose gastrointestinal susceptibility to degradation limits their use in vivo. In this study, carboxymethyl chitosan-lotus seedpod oligomeric procyanidin nanoparticles (CMC-LSOPC NPs) were constructed with a binding ratio of 1:6.51. CMC-LSOPC NPs significantly inhibited the release of AGEs from glycated casein (G-CS) during digestion, increasing the inhibition rate by 25.76% in the gastric phase and by 14.33% in the intestinal phase compared with LSOPC alone. To further investigate the inhibition mechanism, fluorescence microscopy, scanning electron microscopy and FTIR were used to find that CMC-LSOPC NPs could form cohesions to encapsulate G-CS in the gastric phase and hinder G-CS hydrolysis. In the intestinal phase, LSOPC was targeted for release and bound to trypsin through hydrophobic interactions and hydrogen bonding, resulting in protein peptide chain rearrangement, changes in secondary structure and significant reduction in trypsin activity. In addition, CMC-LSOPC NPs increased the antioxidant capacity of digestive fluid and could reduce the oxidative stress in the gastrointestinal tract caused by the release of AGEs. It's the first time that CMC-LSOPC NPs were constructed to enhance the stability of LSOPC during digestion and explain the mechanism by which CMC-LSOPC NPs inhibit the release of AGEs from G-CS in both stomach and intestine. This finding will present a novel approach for reducing AGEs during gastrointestinal digestion.


Asunto(s)
Quitosano , Lotus , Nanopartículas , Proantocianidinas , Productos Dietéticos Finales de Glicación Avanzada , Caseínas/análisis , Proantocianidinas/análisis , Lotus/química , Quitosano/química , Tripsina/análisis , Digestión , Nanopartículas/química , Semillas/química
7.
J Agric Food Chem ; 71(40): 14413-14431, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37754221

RESUMEN

Lotus procyanidins, natural polyphenolic compounds isolated from the lotus plant family, are widely recognized as potent antioxidants that scavenge free radicals in the human body and exhibit various pharmacological effects, such as anti-inflammatory, anticancer, antiobesity, and hypoglycemic. With promising applications in food and healthcare, lotus procyanidins have attracted extensive attention in recent years. This review provides a comprehensive summary of current research on lotus procyanidins, including extraction methods, properties, functions, and interactions with other nutrient components. Furthermore, this review offers an outlook on future research directions, providing ideas and references for the exploitation and utilization of lotus.

8.
J Agric Food Chem ; 71(32): 12311-12324, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37531597

RESUMEN

Research on advanced glycation end product (AGEs) inhibition has generally focused on food processing, but many protein-AGEs will still be taken. Oligopeptide (OLP)-AGEs, as the main form after digestion, will damage human health once absorbed. Here, we investigated the ability of lotus seedpod oligomeric procyanidins (LSOPC) to inhibit the absorption of the OLP-AGEs and elucidated the underlying mechanism. Our results showed that the inhibition rate of LSOPC on the absorption of OLP-AGEs was about 50 ± 5.38%. 0.1, 0.2, and 0.3 mg/mL could upregulate the expression of ZO-1 and downregulate the expression of PepT1 and clathrin. Molecular docking showed that LSOPC could compete with the binding of OLP-AGEs to PepT1 and AP-2, thus inhibiting the absorption of OLP-AGEs. Furthermore, the interaction of LSOPC with the OLP-AGEs reduced the surface hydrophobicity of OLP-AGEs. It altered the secondary structure of the OLP-AGEs, thus weakening the affinity of the OLP-AGEs to the transporter protein to inhibit the absorption of OLP-AGEs. Together, our data revealed potential mechanisms by which LSOPC inhibit the absorption of OLP-AGEs and opened up new perspectives on the application of LSOPC in reducing the increasing health risks posed by OLP-AGEs.


Asunto(s)
Lotus , Proantocianidinas , Humanos , Proantocianidinas/química , Lotus/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Productos Finales de Glicación Avanzada/química , Semillas/química
9.
Food Funct ; 14(17): 7992-8007, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37580964

RESUMEN

Procyanidin-amino acid interactions during transmembrane transport cause changes in the structural and physical properties of peptides, which limits further absorption of oligopeptide-advanced glycation end products (AGEs). In this study, glycated casein hydrolysates (GCSHs) were employed to investigate the structure and interaction mechanism of GCSH with lotus seedpod oligomeric procyanidin (LSOPC) complexes in an intestinal environment. LSOPC can interact with GCSH under certain conditions to form hydrogen bonds and hydrophobic interactions to form GCSH-LSOPC complexes. Results showed that procyanidin further leads to the transformation of a GCSH secondary structure and the increase of surface hydrophobicity (H0). The strongest non-covalent interaction between GCSH and (-)-epigallocatechin gallate (EGCG) was due to the polyhydroxy structure of EGCG. Binding site analysis showed that EGCG binds to the internal cavity of P1 to maintain the relative stability of the binding conformation. The antioxidant capacity of GCSH was remarkably elevated by GCSH-LSOPC. This study will provide a new reference for the accurate control of oligopeptide-AGEs absorption by LSOPC in vivo.


Asunto(s)
Catequina , Lotus , Proantocianidinas , Caseínas/análisis , Extractos Vegetales/química , Proantocianidinas/química , Lotus/química , Antioxidantes/análisis , Catequina/química , Productos Finales de Glicación Avanzada/metabolismo , Semillas/química , Digestión
10.
Int J Biol Macromol ; 249: 125814, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37451379

RESUMEN

Advanced glycation end-products (AGEs) are the final products of the non-enzymatic interaction between reducing sugars and amino groups in proteins, lipids and nucleic acids. In numerous diseases, such as diabetes, neuropathy, atherosclerosis, aging, nephropathy, retinopathy, and chronic renal illness, accumulation of AGEs has been proposed as a pathogenic mechanism of inflammation, oxidative stress, and structural tissue damage leading to chronic vascular issues. Current studies on the inhibition of AGEs mainly focused on food processing. However, there are few studies on the inhibition of AGEs during digestion, absorption and metabolism although there are still plenty of AGEs in our body with our daily diet. This review comprehensively expounded AGEs inhibition mechanism based on the whole process of digestion, absorption and metabolism by polyphenols, amino acids, hydrophilic colloid, carnosine and other new anti-glycation agents. Our study will provide a ground-breaking perspective on mediation or inhibition AGEs.


Asunto(s)
Diabetes Mellitus , Reacción de Maillard , Humanos , Productos Finales de Glicación Avanzada/metabolismo , Estrés Oxidativo , Digestión , Receptor para Productos Finales de Glicación Avanzada/metabolismo
11.
Food Chem X ; 19: 100736, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37415956

RESUMEN

Accumulation of advanced glycation end products (AGEs) is linked with development or aggravation of many degenerative processes or disorders. Fruit vinegars are rich in polyphenols that can be a good dietary source of AGEs inhibitors. In this study, eight kinds of vinegars were prepared. Among them, the highest polyphenol and flavonoid content were orange vinegar and kiwi fruit vinegar, respectively. Ferulic acid, vanillic acid, chlorogenic acid, p-coumaric acid, caffeic acid, catechin, and epicatechin were main polyphenols in eight fruit vinegars. Then, we measured the inhibitory effect of eight fruit vinegars on fluorescent AGEs, and found that orange vinegar had the highest inhibitory rate. Data here suggested that orange vinegar and its main components catechin, epicatechin, and p-coumaric acid could effectively reduce the level of ROS, RAGE, NADPH and inflammatory factors in Caco-2 cells. Our research provided theoretical basis for the application of orange vinegar as AGEs inhibitor.

12.
Biomacromolecules ; 24(6): 2541-2548, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37264927

RESUMEN

The lignin-carbohydrate complexes (LCCs) typically present in the liquors produced in the pre-hydrolysis of biomass cause severe difficulties in downstream fractionation. To address this issue, a series of LCC samples were accessed from solutions obtained from the pre-hydrolysis of extractive-free pine wood meal (H-LCC) and compared with LCC obtained from the corresponding residues (B-LCC). Chromatographic and spectroscopic techniques revealed that 8.2% of the lignins were degraded at 160 °C, resulting from the breakage of ß-O-4' linkages during pre-hydrolysis. Meanwhile, (reactive) hemicelluloses were mainly removed from the fibers' cell walls. Some hemicelluloses in the pre-hydrolysis liquor, such as glucomannans, were associated with degraded lignin fragments via ether and ester bonds. However, the newly formed LCCs were pH-labile and underwent rapid hydrolysis. Overall, we reveal details about LCC formation and degradation during pre-hydrolysis at given temperatures, critically important in efforts to improve biomass processing and valorization.


Asunto(s)
Carbohidratos , Lignina , Lignina/química , Hidrólisis , Espectroscopía de Resonancia Magnética , Carbohidratos/química , Madera/química
13.
Front Nutr ; 9: 1031550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276842

RESUMEN

The advanced glycation end products (AGEs) are formed in baked products through the Maillard reaction (MR), which are thought to be a contributing factor to chronic diseases such as heart diseases and diabetes. Lotus seedpod oligomeric procyanidins (LSOPC) are natural antioxidants that have been added to tough biscuit to create functional foods that may lower the risk of chronic diseases. The effect of LSOPC on AGEs formation and the sensory quality of tough biscuit were examined in this study. With the addition of LSOPC, the AGEs scavenging rate and antioxidant capacity of LSOPC-added tough biscuits were dramatically improved. The chromatic aberration (ΔE) value of tough biscuits containing LSOPC increased significantly. Higher addition of LSOPC, on the other hand, could effectively substantially reduced the moisture content, water activity, and pH of LSOPC toughen biscuits. These findings imply that using LSOPC as additive not only lowers the generation of AGEs, but also improves sensory quality of tough biscuit.

14.
Front Nutr ; 9: 961078, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938127

RESUMEN

Lactic acid bacteria (LAB) have already been used as fermentation strains to enhance the antioxidant capacity of polyphenols. Antioxidant capacity is one of the most important factors to inhibit advanced glycation end product (AGE) formation and could LAB increase the inhibitory capacity of procyanidins on AGEs formation? It was surprising that opposite results were obtained both in simulated food processing and gastrointestinal digestion systems. After incubation with Lactobacillus plantarum (L. plantarum), litchi pericarp oligomeric procyanidins (LPOPCs) were bioconverted to several phenolic acids, which increased the antioxidant activity as expected. However, antiglycation ability and trapping carbonyl compounds capacity both weakened and it might be the primary reason for decreasing the inhibitory effect on AGE formation. Furthermore, it was found that LPOPCs incubated with L. plantarum inhibited the activity of digestive enzymes and thus decreased the digestibility of glycated protein. Our study systematically proposed for the first time that procyanidins bioconversion is an effective means to improve the antioxidant activity but has no remarkable promoting effect on AGEs inhibition.

15.
Food Res Int ; 155: 111099, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35400472

RESUMEN

Glycated protein is a kind of substance that often exists in the human body through the combination of sugar and protein under enzyme or non-enzyme conditions. Enzyme-catalyzed glycated proteins are widely distributed in the human body and participate in life activities such as human growth and immune regulation. Non-enzymatic glycated protein is often related to cancer, aging, diabetes and other diseases, but in vitro non-enzymatic glycated protein has utility value after modification. This review not only discussed the effects of enzymatic glycated protein on human intestinal health, immune regulation and cancer prevention. The inhibition methods of non-enzymatic glycated protein in food processing, digestion, absorption and metabolism were also elucidated.


Asunto(s)
Diabetes Mellitus , Carbohidratos , Glicosilación , Humanos , Proteínas
16.
Aging (Albany NY) ; 14(6): 2880-2901, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35344508

RESUMEN

Although complex links between heterogeneous nuclear ribonucleoprotein C (HNRNPC) and numerous types of cancer have been shown in both cell and animal models, a comprehensive pan-cancer investigation on the features and activities of HNRNPC is still lacking. Based on the Cancer Genome Atlas and Gene Expression Omnibus datasets, we investigated the possible oncogenic effects of HNRNPC in thirty-three cancers. HNRNPC expression was detected in the majority of cancers, and its expression level was shown to be significantly linked with cancer patient prognosis. HNRNPC increased the phosphorylation of S220, which was detected in various cancers, including ovarian cancer and colon cancer. HNRNPC expression was also shown to be related to cancer-associated cell infiltration, most notably in uveal melanoma, testicular germ cell tumors, and thymoma. Additionally, the signaling pathway for vascular endothelial growth factors and RNA transport were implicated in HNRNPC's functioning processes. In short, HNRNPC may further influence cancer progression through gene mutation, protein phosphorylation, cancer associated fibroblasts infiltration and related molecular pathways. This work was intended to provide a relatively thorough knowledge of the oncogenic activities of HNRNPC across a variety of tumor types by performing a systematic pan-cancer investigation.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C , Neoplasias , Animales , Carcinogénesis , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Humanos , Neoplasias/genética , Oncogenes , Pronóstico
17.
Food Res Int ; 152: 110912, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35181084

RESUMEN

Glycation of protein results in the formation of advanced glycation end-products (AGEs), which are further absorbed by the body through digestion in the gastrointestinal tract. The inhibitory properties of procyanidin for the release of AGEs from glycated proteins are of great significance in promoting, accelerating or stabilizing gastrointestinal folding intermediates, although the mechanism of action remains unclear. With the background of dairy processing, the study investigated the inhibitory effect of lotus seedpod oligomeric procyanidins (LSOPC) and its three monomers on AGE release from glycated casein (G-CS) during gastrointestinal digestion. In gastrointestinal microenvironments, multispectral and microscopy analysis were used to investigate interaction mechanisms. Results showed that the binding force of the protein-procyanidin complexes were hydrogen bonding and hydrophobic interaction and LSOPC leaded the G-CS secondary structure transformations furtherly. In the gastric environment, all monomers displayed stronger binding to pepsin but in the intestinal environment, results were opposite. Molecular docking showed that procyanidins were bound in the internal cavity of G-CS, pepsin and pancreatin, thereby forming a relatively stable binding conformation. Moreover, procyanidins enhanced the antioxidant capacity of G-CS, which could attenuate postprandial oxidative stress in the gastrointestinal tract caused by the release of AGEs. Together, this study improves our understanding of dietary AGEs during gastrointestinal digestion.


Asunto(s)
Lotus , Proantocianidinas , Biflavonoides , Caseínas/análisis , Catequina , Digestión , Lotus/química , Simulación del Acoplamiento Molecular , Proantocianidinas/química , Semillas/química
18.
Front Nutr ; 9: 1064188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36590228

RESUMEN

At the conclusion of the Maillard reaction (MR), free amino groups of proteins, amino acids, or lipids with the carboxyl groups of reducing sugars to form stable molecules known as advanced glycation end products (AGEs), which hasten aging and may potentially be the root cause of a number of chronic degenerative diseases. According to researches, lotus seedpod oligomeric procyanidins (LSOPC), a premium natural antioxidant produced from lotus waste, can be included in cookies to improve flavor and lower the risk of illnesses linked to AGEs. In this work, we used cookies without LSOPC as a control to examine the effects of adding various concentrations of LSOPC (0, 0.05, 0.1, 0.2, and 0.4%) on the AGEs formation and the sensory quality in cookies. The amounts of AGEs and N-ε-carboxymethyl lysine (CML) decreased with the increase of LSOPC concentration, indicating that the concentration of LSOPC was positively correlated with the ability to inhibit AGEs formation. It was also demonstrated that the amount of antioxidant capacity of the cookies increased significantly with the increase of LSOPC concentration. On the other hand, the chromaticity, texture, electronic nose, and other aspects of the cookies' sensory attributes were also evaluated. The color of the cookies deepened and the flavor varied as LSOPC added content increased. The sensory quality of the cookies was examined, and the findings indicated that LSOPC would somewhat improve that quality. These findings implied that AGEs formation could be decreased in cookies while also enhancing their sensory quality by adding LSOPC.

19.
Front Nutr ; 8: 781998, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34805254

RESUMEN

The basic ingredients of yogurt include lactose and protein. Yogurt undergoes the Maillard reaction easily, producing many advanced glycation end products (AGEs) that cause some chronic diseases. Lotus seedpod oligomeric procyanidin (LSOPC) have demonstrated a strong inhibitory effect on AGE formation in simulated models; however, the inhibition of procyanidin on AGE formation and the subsequent effects on yogurt quality remains unknown. Our study demonstrated that LSOPC had a good inhibitory effect on the formation of fluorescent AGEs and Nε-carboxymethyl lysine (P < 0.05). The inhibitory capacity on AGEs and antioxidant activity of yogurt were positively correlated with the concentration of LSOPC. The effect of LSOPC on the physicochemical properties of yogurt was also evaluated. Bound water content, viscosity, and flavor of yogurt were significantly increased after LSOPC addition (P < 0.05). Therefore, LSOPC may lead to significant benefits for controlling AGE formation and improving the quality of yogurt.

20.
Front Nutr ; 8: 751627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631776

RESUMEN

The extent of retrogradation strongly affects certain physical and cooking properties of rice starch (RS), which are important to consumers. In this study, oligomeric procyanidins from lotus seedpod (LSOPC) was prepared and used to investigate its inhibitory effect on RS retrogradation. Various structural changes of RS during retrogradation were characterized by differential scanning calorimetry, low field nuclear magnetic resonance, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. The results showed LSOPC could effectively retard both short- and long-term retrogradation of RS, and its inhibitory effect was dependent on the administered concentration of LSOPC. Molecule simulation revealed the interactions of RS and LSOPC, which indicated that the competition of hydrogen bonds between RS and LSOPC was the critical factor for anti-retrogradation. This inhibitory effect and mechanism of action of LSOPC could promote its applications in the field of starch anti-retrogradation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...