Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Trends Cell Biol ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37743160

RESUMEN

Peroxisomes are vital metabolic organelles that import their lumenal (matrix) enzymes from the cytosol using mobile receptors. Surprisingly, the receptors can even import folded proteins, but the underlying mechanism has been a mystery. Recent results reveal how import receptors shuttle cargo into peroxisomes. The cargo-bound receptors move from the cytosol across the peroxisomal membrane completely into the matrix by a mechanism that resembles transport through the nuclear pore. The receptors then return to the cytosol through a separate retrotranslocation channel, leaving the cargo inside the organelle. This cycle concentrates imported proteins within peroxisomes, and the energy for cargo import is supplied by receptor export. Peroxisomal protein import thus fundamentally differs from other previously known mechanisms for translocating proteins across membranes.

2.
Science ; 378(6625): eadf3971, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36520918

RESUMEN

Peroxisomes are ubiquitous organelles whose dysfunction causes fatal human diseases. Most peroxisomal proteins are imported from the cytosol in a folded state by the soluble receptor PEX5. How folded cargo crosses the membrane is unknown. Here, we show that peroxisomal import is similar to nuclear transport. The peroxisomal membrane protein PEX13 contains a conserved tyrosine (Y)- and glycine (G)-rich YG domain, which forms a selective phase resembling that formed by phenylalanine-glycine (FG) repeats within nuclear pores. PEX13 resides in the membrane in two orientations that oligomerize and suspend the YG meshwork within the lipid bilayer. Purified YG domains form hydrogels into which PEX5 selectively partitions, by using conserved aromatic amino acid motifs, bringing cargo along. The YG meshwork thus forms an aqueous conduit through which PEX5 delivers folded proteins into peroxisomes.


Asunto(s)
Proteínas de la Membrana , Poro Nuclear , Peroxisomas , Humanos , Glicina/química , Glicina/genética , Poro Nuclear/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secuencia Conservada , Dominios Proteicos , Tirosina/química , Tirosina/genética
3.
Biochem Soc Trans ; 50(6): 1921-1930, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36421406

RESUMEN

Peroxisomes are membrane-bounded organelles that exist in most eukaryotic cells and are involved in the oxidation of fatty acids and the destruction of reactive oxygen species. Depending on the organism, they house additional metabolic reactions that range from glycolysis in parasitic protozoa to the production of ether lipids in animals and antibiotics in fungi. The importance of peroxisomes for human health is revealed by various disorders - notably the Zellweger spectrum - that are caused by defects in peroxisome biogenesis and are often fatal. Most peroxisomal metabolic enzymes reside in the lumen, but are synthesized in the cytosol and imported into the organelle by mobile receptors. The receptors accompany cargo all the way into the lumen and must return to the cytosol to start a new import cycle. Recycling requires receptor monoubiquitination by a membrane-embedded ubiquitin ligase complex composed of three RING finger (RF) domain-containing proteins: PEX2, PEX10, and PEX12. A recent cryo-electron microscopy (cryo-EM) structure of the complex reveals its function as a retro-translocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that assemble into an open channel. The N terminus of a receptor likely inserts into the pore from the lumenal side, and is then monoubiquitinated by one of the RFs to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitinated by the concerted action of the other two RFs and ultimately degraded. The new data provide mechanistic insight into a crucial step of peroxisomal protein import.


Asunto(s)
Proteínas de la Membrana , Receptores Citoplasmáticos y Nucleares , Animales , Humanos , Peroxinas/metabolismo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Microscopía por Crioelectrón , Proteínas de la Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas , Ubiquitinas/metabolismo , Ligasas/metabolismo
4.
Nature ; 607(7918): 374-380, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768507

RESUMEN

Peroxisomes are ubiquitous organelles that house various metabolic reactions and are essential for human health1-4. Luminal peroxisomal proteins are imported from the cytosol by mobile receptors, which then recycle back to the cytosol by a poorly understood process1-4. Recycling requires receptor modification by a membrane-embedded ubiquitin ligase complex comprising three RING finger domain-containing proteins (Pex2, Pex10 and Pex12)5,6. Here we report a cryo-electron microscopy structure of the ligase complex, which together with biochemical and in vivo experiments reveals its function as a retrotranslocation channel for peroxisomal import receptors. Each subunit of the complex contributes five transmembrane segments that co-assemble into an open channel. The three ring finger domains form a cytosolic tower, with ring finger 2 (RF2) positioned above the channel pore. We propose that the N terminus of a recycling receptor is inserted from the peroxisomal lumen into the pore and monoubiquitylated by RF2 to enable extraction into the cytosol. If recycling is compromised, receptors are polyubiquitylated by the concerted action of RF10 and RF12 and degraded. This polyubiquitylation pathway also maintains the homeostasis of other peroxisomal import factors. Our results clarify a crucial step during peroxisomal protein import and reveal why mutations in the ligase complex cause human disease.


Asunto(s)
Microscopía por Crioelectrón , Peroxisomas , Complejos de Ubiquitina-Proteína Ligasa , Citosol/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Peroxinas/química , Peroxinas/metabolismo , Peroxinas/ultraestructura , Factor 2 de la Biogénesis del Peroxisoma/química , Factor 2 de la Biogénesis del Peroxisoma/metabolismo , Factor 2 de la Biogénesis del Peroxisoma/ultraestructura , Peroxisomas/enzimología , Peroxisomas/ultraestructura , Poliubiquitina , Transporte de Proteínas , Dominios RING Finger , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/ultraestructura , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/ultraestructura
5.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32169217

RESUMEN

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Asunto(s)
Arabidopsis/metabolismo , Transporte de Proteínas/fisiología , Sistema de Translocación de Arginina Gemela/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Biogénesis de Organelos , Orgánulos/metabolismo , Transición de Fase , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Sistema de Translocación de Arginina Gemela/fisiología
6.
Proc Natl Acad Sci U S A ; 113(38): 10708-13, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27601637

RESUMEN

Light is a major environmental factor regulating flowering time, thus ensuring reproductive success of higher plants. In contrast to our detailed understanding of light quality and photoperiod mechanisms involved, the molecular basis underlying high light-promoted flowering remains elusive. Here we show that, in Arabidopsis, a chloroplast-derived signal is critical for high light-regulated flowering mediated by the FLOWERING LOCUS C (FLC). We also demonstrate that PTM, a PHD transcription factor involved in chloroplast retrograde signaling, perceives such a signal and mediates transcriptional repression of FLC through recruitment of FVE, a component of the histone deacetylase complex. Thus, our data suggest that chloroplasts function as essential sensors of high light to regulate flowering and adaptive responses by triggering nuclear transcriptional changes at the chromatin level.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Flores/genética , Proteínas de Dominio MADS/genética , Dedos de Zinc PHD/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/genética , Núcleo Celular/efectos de la radiación , Cloroplastos/genética , Cloroplastos/metabolismo , Cromatina/genética , Cromatina/efectos de la radiación , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Histona Desacetilasas/genética , Luz , Transducción de Señal/genética , Factores de Transcripción
7.
Nat Commun ; 7: 12173, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27399341

RESUMEN

Chloroplast retrograde signals play important roles in coordinating the plastid and nuclear gene expression and are critical for proper chloroplast biogenesis and for maintaining optimal chloroplast functions in response to environmental changes in plants. Until now, the signals and the mechanisms for retrograde signalling remain poorly understood. Here we identify factors that allow the nucleus to perceive stress conditions in the chloroplast and to respond accordingly by inducing or repressing specific nuclear genes encoding plastid proteins. We show that ABI4, which is known to repress the LHCB genes during retrograde signalling, is activated through phosphorylation by the MAP kinases MPK3/MPK6 and the activity of these kinases is regulated through 14-3-3ω-mediated Ca(2+)-dependent scaffolding depending on the chloroplast calcium sensor protein CAS. These findings uncover an additional mechanism in which chloroplast-modulated Ca(2+) signalling controls the MAPK pathway for the activation of critical components of the retrograde signalling chain.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejos de Proteína Captadores de Luz/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Plastidios/metabolismo , Factores de Transcripción/metabolismo , Proteínas 14-3-3/metabolismo , Arabidopsis/genética , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Biogénesis de Organelos , Plantas Modificadas Genéticamente , Transducción de Señal
8.
Nat Plants ; 2(6): 16066, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27255835

RESUMEN

Seedling de-etiolation prepares plants to switch from heterotrophic to photoautotrophic growth, a transition essential for plant survival. This delicate de-etiolation process is precisely controlled by environmental and endogenous signals. Although intracellular plastid-derived retrograde signalling is essential for the de-etiolation process, the molecular nature of these retrograde signals remains elusive(1-3). Here we show that chloroplast and light signals antagonistically fine-tune a suite of developmental and physiological responses associated with de-etiolation through a transcriptional module of ABA INSENSITIVE 4 (ABI4) and ELONGATED HYPOCOTYL 5 (HY5). Moreover, ABI4 and HY5 antagonistically regulate the expression of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and the subsequent greening process. In turn, ABI4 and HY5 are targeted for degradation by COP1 in the light and dark, respectively, to ensure a proper interplay of ABI4 and HY5 actions during seedling de-etiolation. Our study provides a new molecular mechanism for understanding how chloroplast signals converge with light signals to optimize early plant development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Etiolado , Regulación de la Expresión Génica de las Plantas , Proteínas Nucleares/genética , Transducción de Señal , Factores de Transcripción/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cloroplastos/fisiología , Luz , Proteínas Nucleares/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas
9.
Proc Natl Acad Sci U S A ; 113(25): E3568-76, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27274065

RESUMEN

Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Luz , Serina Proteasas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
10.
Curr Opin Plant Biol ; 25: 32-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25912815

RESUMEN

Intracellular signaling from chloroplast to nucleus followed by a subsequent response in the chloroplast is called retrograde signaling. It not only coordinates the expression of nuclear and chloroplast genes, which is essential for chloroplast biogenesis, but also maintains chloroplast function at optimal levels in response to fluxes in metabolites and changes in environmental conditions. In recent years several putative retrograde signals have been identified and signaling pathways have been proposed. Here we review retrograde signals derived from tetrapyrroles, carotenoids, nucleotides and isoprene precursors in response to abiotic stresses, including oxidative stress. We discuss the responses that these signals elicit and show that they not only modify chloroplast function but also influence other aspects of plant development and adaptation.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Transducción de Señal , Carotenoides/metabolismo , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico
11.
Nat Commun ; 2: 477, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21934661

RESUMEN

Chloroplast development, maintenance and function depend on the coordinated expression of chloroplast and nuclear genes. The retrograde chloroplast signals are essential in coordinating nuclear gene expression. Although the sources of signals in chloroplasts have been identified and the associated transcription factors in the nucleus extensively studied, the molecular mechanism that relays chloroplast signals to the nucleus remains a mystery. Here we show that PTM, a chloroplast envelope-bound plant homeodomain (PHD) transcription factor with transmembrane domains, functions in multiple retrograde signal pathways. The proteolytic cleavage of PTM occurs in response to retrograde signals and amino-terminal PTM accumulates in the nucleus, where it activates ABI4 transcription in a PHD-dependent manner associated with histone modifications. These results provide a molecular basis for the critical function of PTM in retrograde chloroplast signaling and shed new light on the mechanism whereby chloroplast signals are transmitted to the nucleus through the cytosol.


Asunto(s)
Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares , Plantas Modificadas Genéticamente/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...