Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 646
Filtrar
1.
Hum Reprod ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725195

RESUMEN

STUDY QUESTION: Can exposure to palmitic acid (PA), a common saturated fatty acid, modulate autophagy in both human and mouse trophoblast cells through the regulation of acyl-coenzyme A-binding protein (ACBP)? SUMMARY ANSWER: PA exposure before and during pregnancy impairs placental development through mechanisms involving placental autophagy and ACBP expression. WHAT IS KNOWN ALREADY: High-fat diets, including PA, have been implicated in adverse effects on human placental and fetal development. Despite this recognition, the precise molecular mechanisms underlying these effects are not fully understood. STUDY DESIGN, SIZE, DURATION: Extravillous trophoblast (EVT) cell line HTR-8/SVneo and human trophoblast stem cell (hTSC)-derived EVT (hTSCs-EVT) were exposed to PA or vehicle control for 24 h. Female wild-type C57BL/6 mice were divided into PA and control groups (n = 10 per group) and subjected to a 12-week dietary intervention. Afterward, they were mated with male wild-type C57BL/6 mice and euthanized on Day 14 of gestation. Female ACBPflox/flox mice were also randomly assigned to control and PA-exposed groups (each with 10 mice), undergoing the same dietary intervention and mating with ACBPflox/floxELF5-Cre male mice, followed by euthanasia on Day 14 of gestation. The study assessed the effects of PA on mouse embryonic development and placental autophagy. Additionally, the role of ACBP in the pathogenesis of PA-induced placental toxicity was investigated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The findings were validated using real-time PCR, Western blot, immunofluorescence, transmission electron microscopy, and shRNA knockdown approaches. MAIN RESULTS AND THE ROLE OF CHANCE: Exposure to PA-upregulated ACBP expression in both human HTR-8/SVneo cells and hTSCs-EVT, as well as in mouse placenta. PA exposure also induced autophagic dysfunction in HTR-8/SVneo cells, hTSCs-EVT, and mouse placenta. Through studies on ACBP placental conditional knockout mice and ACBP knockdown human trophoblast cells, it was revealed that reduced ACBP expression led to trophoblast malfunction and affected the expression of autophagy-related proteins LC3B-II and P62, thereby impacting embryonic development. Conversely, ACBP knockdown partially mitigated PA-induced impairment of placental trophoblast autophagy, observed both in vitro in human trophoblast cells and in vivo in mice. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Primary EVT cells from early pregnancy are fragile, limiting research use. Maintaining their viability is tough, affecting data reliability. The study lacks depth to explore PA diet cessation effects after 12 weeks. Without follow-up, understanding postdiet impacts on pregnancy stages is incomplete. Placental abnormalities linked to elevated PA diet in embryos lack confirmation due to absence of control groups. Clarifying if issues stem solely from PA exposure is difficult without proper controls. WIDER IMPLICATIONS OF THE FINDINGS: Consuming a high-fat diet before and during pregnancy may result in complications or challenges in successfully carrying the pregnancy to term. It suggests that such dietary habits can have detrimental effects on the health of both the mother and the developing fetus. STUDY FUNDING/COMPETING INTEREST(S): This work was supported in part by the National Natural Science Foundation of China (82171664, 82301909) and the Natural Science Foundation of Chongqing Municipality of China (CSTB2022NS·CQ-LZX0062, cstc2019jcyj-msxmX0749, and cstc2021jcyj-msxmX0236). The authors declare that they have no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.

2.
J Stroke Cerebrovasc Dis ; : 107773, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38763326

RESUMEN

OBJECTIVES: Remnant cholesterol (RC) is thought to be an important pathogenic risk factor for atherosclerosis, however, the relationship between RC and acute ischemic stroke (AIS) is still unclear. This study aimed to determine whether fasting blood RC level is an independent risk factor for AIS. MATERIALS AND METHODS: A retrospective analysis was performed on 650 patients with AIS and 598 healthy controls during the same time period. The association between RC and AIS was investigated using binary logistic regression, and the relationship between RC and AIS risk was demonstrated using Restricted Cubic Splines (RCS). RESULTS: RC was significantly higher in the AIS group compared with control group, and was an independent risk factor for AIS when the covariates were not adjusted;After adjusting some covariates, RC was still an independent risk factor for AIS. The RCS analysis found the risk was non-linear: when RC concentration was less than 0.69 mol/L, the risk of AIS increased with the elevation of RC, and when RC concentration was more than or equal to 0.69 mol/L, the risk of AIS was insignificant with the elevation of RC. Correlation analysis revealed that RC was associated with diabetes and fasting glucose. Further analysis revealed that the incidence of AIS in diabetic patients increased significantly with the increase of RC, and RCS analysis revealed that the risk of AIS in diabetic patients increased with the increase of RC when RC was more than 1.15 mol/L. CONCLUSIONS: This study confirms RC as an independent risk factor for AIS, which highlights a distinct non-linear association between RC levels and AIS risk. These findings suggest the need for targeted AIS risk assessment strategies, especially in diabetic patients, and underscore the relevance of RC as a biomarker in AIS risk stratification.

3.
Int J Biol Macromol ; : 132453, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772472

RESUMEN

Ultrasonic extraction of Osmanthus fragrans was used for reducing Ag+ to prepare AgNPs, which were further loaded on barley distiller's grains shell biochar. By supplementary of sodium alginate and tannic acid, composite gel beads were prepared. The physical properties of biochar-based AgNPs­sodium alginate-tannic acid composite gel beads (C-Ag/SA/TA) were characterized. SEM, FTIR, and XRD showed that biochar-based AgNPs were compatible with sodium alginate-tannic acid. CAg greatly improved the dissolution, swelling, and expansion of gel beads. Through the analysis by the agar diffusion method, C-Ag/SA/TA gel beads had high antibacterial activity (inhibition zone: 22 mm against Escherichia coli and 20 mm against Staphylococcus aureus). It was observed that C-Ag/SA/TA composite gel beads had high antioxidant capacity and the free radical scavenging rate reached 89.0 %. The dye adsorption performance of gel beads was studied by establishing a kinetic model. The maximum adsorption capacities of C-Ag/SA/TA gel beads for methylene blue and Congo red were 166.57 and 318.06 mg/g, respectively. The removal rate of Cr(VI) reached 96.4 %. These results indicated that the prepared composite gel beads had a high adsorption capacity for dyes and metal ions. Overall, C-Ag/SA/TA composite gel beads were biocompatible and had potential applications in environmental pollution treatment.

4.
Angew Chem Int Ed Engl ; : e202407923, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738617

RESUMEN

Although catenated cages have been widely constructed due to their unique and elegant topological structures, cyclic catenanes formed by the connection of multiple catenane units have been rarely reported. Herein, based on the orthogonal metal-coordination-driven self-assembly, we prepare a series of heterometallic [2]catenanes and cyclic bis[2]catenanes, whose structures are clearly evidenced by single-crystal X-ray analysis. Owing to the multiple positively charged nature, as well as the potential synergistic effect of the Cu(I) and Pt(II) metal ions, the cyclic bis[2]catenanes display broad-spectrum antibacterial activity. This work not only provides an efficient strategy for the construction of heterometallic [2]catenanes and cyclic bis[2]catenanes but also explores their applications as superior antibacterial agents, which will promote the construction of advanced supramolecular structures for biomedical applications.

5.
Environ Res ; 252(Pt 4): 119093, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38723991

RESUMEN

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.

6.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38736181

RESUMEN

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hypericum , Simulación del Acoplamiento Molecular , Extractos Vegetales , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Hypericum/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Estructura Molecular , Ligandos , Relación Estructura-Actividad , Cinética
8.
Hum Reprod Open ; 2024(2): hoae015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716407

RESUMEN

Up to a half of couples seeking medical assistance for infertility are diagnosed with unexplained infertility, characterized by normal ovulation, tubal patency, and semen analysis results. This condition presents a challenge in determining the optimal treatment approach. Available treatments include IUI and IVF, but guidelines vary on when to offer each. Prognosis-based management is identified as a research priority, and various prediction models have been developed to guide treatment decisions. Prognostic factors include female age, duration of subfertility, and sperm parameters, among others. Prognosis-based strategies can enhance cost-effectiveness, safety, and patient outcomes, offering less invasive options to those with good prognoses and more aggressive interventions to those with poor prognoses. However, there is a gap between research evidence and its clinical application. In this article, we discuss the application of prognosis-based management in the context of unexplained infertility, highlighting its potential to improve clinical decision-making and patient outcomes.

9.
Bioact Mater ; 37: 424-438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38689661

RESUMEN

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures. Itaconate is a TCA cycle metabolite that has emerged as a potent macrophage immunomodulator that limits the inflammatory response. During osteogenic differentiation, BMSCs tend to undergo aerobic glycolysis and metabolize glucose to lactate. Copper ion (Cu2+) is an essential trace element that participates in glucose metabolism and may stimulate glycolysis in BMSCs and promote osteogenesis. In this study, we develop a 4-octyl itaconate (4-OI)@Cu@Gel nanocomposite hydrogel that can effectively deliver and release 4-OI and Cu2+ to modulate the metabolic microenvironment and improve the functions of cells involved in the fracture healing process. The findings reveal that burst release of 4-OI reduces the inflammatory response, promotes M2 macrophage polarization, and alleviates oxidative stress, while sustained release of Cu2+ stimulates BMSC glycolysis and osteogenic differentiation and enhances endothelial cell angiogenesis. Consequently, the 4-OI@Cu@Gel system achieves rapid fracture healing in mice. Thus, this study proposes a promising regenerative strategy to expedite bone fracture healing through metabolic reprogramming of macrophages and BMSCs.

10.
Colloids Surf B Biointerfaces ; 238: 113916, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636438

RESUMEN

The ureteral stent is an effective treatment for clinical ureteral stricture following urological surgery, and the functional coating of the stent could effectively inhibit bacterial colonization and other complications. The present review provides an analysis and description of the materials used in ureteral stents and their coatings. Emphasis is placed on the technological advancements of functional coatings, taking into consideration the characteristics of these materials and the properties of their active substances. Furthermore, recent advances in enhancing the therapeutic efficacy of functional coatings are also reviewed. It is anticipated that this article will serve as a valuable reference providing insights for future research development on new drug-loaded ureteral stents.


Asunto(s)
Materiales Biocompatibles Revestidos , Polímeros , Stents , Uréter , Humanos , Uréter/cirugía , Polímeros/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Animales
11.
Medicine (Baltimore) ; 103(16): e37783, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640321

RESUMEN

Ovarian cancer (OC) is the leading cause of gynecological cancer death. Cancer-associated fibroblasts (CAF) is involved in wound healing and inflammatory processes, tumor occurrence and progression, and chemotherapy resistance in OC. GSE184880 dataset was used to identify CAF-related genes in OC. CAF-related signature (CRS) was constructed using integrative 10 machine learning methods with the datasets from the Cancer Genome Atlas, GSE14764, GSE26193, GSE26712, GSE63885, and GSE140082. The performance of CRS in predicting immunotherapy benefits was verified using 3 immunotherapy datasets (GSE91061, GSE78220, and IMvigor210) and several immune calculating scores. The Lasso + StepCox[forward] method-based predicting model having a highest average C index of 0.69 was referred as the optimal CRS and it had a stable and powerful performance in predicting clinical outcome of OC patients, with the 1-, 3-, and 5-year area under curves were 0.699, 0.708, and 0.767 in the Cancer Genome Atlas cohort. The C index of CRS was higher than that of tumor grade, clinical stage, and many developed signatures. Low CRS score demonstrated lower tumor immune dysfunction and exclusion score, lower immune escape score, higher PD1&CTLA4 immunophenoscore, higher tumor mutation burden score, higher response rate and better prognosis in OC, suggesting a better immunotherapy response. OC patients with low CRS score had a lower half maximal inhibitory concentration value of some drugs (Gemcitabine, Tamoxifen, and Nilotinib, etc) and lower score of some cancer-related hallmarks (Notch signaling, hypoxia, and glycolysis, etc). The current study developed an optimal CRS in OC, which acted as an indicator for the prognosis, stratifying risk and guiding treatment for OC patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Fibroblastos , Gemcitabina , Glucólisis , Pronóstico
12.
Medicine (Baltimore) ; 103(15): e37728, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608069

RESUMEN

Stomach adenocarcinoma (STAD) is one of the subtype of gastric cancer with high invasiveness, extreme heterogeneity, high morbidity, and high mortality. The degradome is the most abundant class of cellular enzymes that play an essential role in regulating cellular activity and carcinogenesis. An integrative machine learning procedure including 10 methods was performed to develop a prognostic degradome-based prognostic signature (DPS) in TCGA, GSE15459, GSE26253, and GSE62254 datasets. Investigations of the DPS concerning immune infiltration, immunotherapy benefits, and drug priority were orchestrated. The DPS developed by Enet [alpha = 0.3] method was regarded as the optimal prognostic model. The DPS had a stable and powerful performance in predicting the clinical outcome of STAD and served as an independent risk factor in training and testing cohorts. The C-index of DPS was higher than that of age, sex, and clinical stage. STAD patients with low DPS scores had a higher abundance of B cells, CD8+ T cells, higher cytolytic scores, and T cell co-stimulation scores. Moreover, low DPS score indicated a lower tumor immune dysfunction and exclusion score, lower T cell dysfunction and exclusion score, higher PD1&CTLA4 immunophenoscore, and higher tumor mutation burden score in STAD, demonstrating a better immunotherapy response. STAD patients with a high DPS score had a lower IC50 value of common chemotherapy and targeted therapy regimens (Cisplatin, Docetaxel, Gefitinib, etc). Our study developed an optimal DPS for STAD. The DPS could predict the prognosis, risk stratification and guide treatment for STAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/terapia , Pronóstico , Inmunoterapia , Adenocarcinoma/terapia
13.
Bioact Mater ; 37: 119-131, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549773

RESUMEN

In situ monitoring of bone regeneration enables timely diagnosis and intervention by acquiring vital biological parameters. However, an existing gap exists in the availability of effective methodologies for continuous and dynamic monitoring of the bone tissue regeneration process, encompassing the concurrent visualization of bone formation and implant degradation. Here, we present an integrated scaffold designed to facilitate real-time monitoring of both bone formation and implant degradation during the repair of bone defects. Laponite (Lap), CyP-loaded mesoporous silica (CyP@MSNs) and ultrasmall superparamagnetic iron oxide nanoparticles (USPIO@SiO2) were incorporated into a bioink containing bone marrow mesenchymal stem cells (BMSCs) to fabricate functional scaffolds denoted as C@M/GLU using 3D bioprinting technology. In both in vivo and in vitro experiments, the composite scaffold has demonstrated a significant enhancement of bone regeneration through the controlled release of silicon (Si) and magnesium (Mg) ions. Employing near-infrared fluorescence (NIR-FL) imaging, the composite scaffold facilitates the monitoring of alkaline phosphate (ALP) expression, providing an accurate reflection of the scaffold's initial osteogenic activity. Meanwhile, the degradation of scaffolds was monitored by tracking the changes in the magnetic resonance (MR) signals at various time points. These findings indicate that the designed scaffold holds potential as an in situ bone implant for combined visualization of osteogenesis and implant degradation throughout the bone repair process.

14.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492223

RESUMEN

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , beta-Glucanos , Animales , Neutrófilos , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Axones/fisiología , Mamíferos
15.
ACS Nano ; 18(14): 9871-9885, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38545939

RESUMEN

As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.


Asunto(s)
Antineoplásicos , Sulfuro de Hidrógeno , Nanopartículas , Neoplasias , Humanos , Sulfuro de Hidrógeno/uso terapéutico , Antineoplásicos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Glutatión , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral , Nanopartículas/química
16.
Medicine (Baltimore) ; 103(10): e37314, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457593

RESUMEN

Stomach adenocarcinoma (STAD) is a one of most common malignancies with high mortality-to-incidence ratio. Programmed cell death (PCD) exerts vital functions in the progression of cancer. The role of PCD-related genes (PRGs) in STAD are not fully clarified. Using TCGA, GSE15459, GSE26253, GSE62254 and GSE84437 datasets, PCD-related signature (PRS) was constructed with an integrative procedure including 10 machine learning methods. The role of PRS in predicting the immunotherapy benefits was evaluated by several predicting score and 3 immunotherapy datasets (GSE91061, GSE78220, and IMvigor210). The model developed by Lasso + CoxBoost algorithm having a highest average C-index of 0.66 was considered as the optimal PRS. As an independent risk factor for STAD patients, PRS had a good performance in predicting the overall survival rate of patients, with an AUC of 1-, 3-, and 5-year ROC curve being 0.771, 0.751 and 0.827 in TCGA cohort. High PRS score demonstrated a lower gene set score of some immune-activated cells and immune-activated activities. Patient with high PRS score had a higher TIDE score, higher immune escape score, lower PD1&CTLA4 immunophenoscore, lower TMB score, lower response rate and poor prognosis, indicating a less immunotherapy response. The IC50 value of some drugs correlated with chemotherapy and targeted therapy was higher in high PRS score group. Our investigation developed an optimal PRS in STAD and it acted as an indicator for predicting the prognosis, stratifying risk and guiding treatment for STAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Humanos , Muerte Celular , Pronóstico , Inmunoterapia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Aprendizaje Automático
17.
Bioact Mater ; 36: 287-300, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38496033

RESUMEN

The rheumatoid arthritis (RA) microenvironment is often followed by a vicious circle of high inflammation, endogenous gas levels imbalance, and poor treatment. To break the circle, we develop a dual-gas-mediated injectable hydrogel for modulating the immune microenvironment of RA and simultaneously releasing therapeutic drugs. The hydrogel (DNRS gel) could be broken down on-demand by consuming excessive nitric oxide (NO) and releasing therapeutic hydrogen sulfide (H2S), resulting in endogenous gas restoration, inflammation alleviation, and macrophage polarization to M2 type. Additionally, the hydrogel could suppress osteoclastogenesis and enhance osteogenesis. Furthermore, the intra-articularly injected hydrogel with methotrexate (MTX/DNRS gel) significantly alleviated inflammation and clinical symptoms and promoted the repair of bone erosion in the collagen-induced arthritis rat model. As a result, in vivo results demonstrated that MTX/DNRS gel restored the microenvironment and improved the therapeutic effect of MTX. This study provides a novel understanding of developing versatile smart delivery platforms for RA treatment.

18.
Biomed Eng Online ; 23(1): 31, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468262

RESUMEN

BACKGROUND: Ultrasound three-dimensional visualization, a cutting-edge technology in medical imaging, enhances diagnostic accuracy by providing a more comprehensive and readable portrayal of anatomical structures compared to traditional two-dimensional ultrasound. Crucial to this visualization is the segmentation of multiple targets. However, challenges like noise interference, inaccurate boundaries, and difficulties in segmenting small structures exist in the multi-target segmentation of ultrasound images. This study, using neck ultrasound images, concentrates on researching multi-target segmentation methods for the thyroid and surrounding tissues. METHOD: We improved the Unet++ to propose PA-Unet++ to enhance the multi-target segmentation accuracy of the thyroid and its surrounding tissues by addressing ultrasound noise interference. This involves integrating multi-scale feature information using a pyramid pooling module to facilitate segmentation of structures of various sizes. Additionally, an attention gate mechanism is applied to each decoding layer to progressively highlight target tissues and suppress the impact of background pixels. RESULTS: Video data obtained from 2D ultrasound thyroid serial scans served as the dataset for this paper.4600 images containing 23,000 annotated regions were divided into training and test sets at a ratio of 9:1, the results showed that: compared with the results of U-net++, the Dice of our model increased from 78.78% to 81.88% (+ 3.10%), the mIOU increased from 73.44% to 80.35% (+ 6.91%), and the PA index increased from 92.95% to 94.79% (+ 1.84%). CONCLUSIONS: Accurate segmentation is fundamental for various clinical applications, including disease diagnosis, treatment planning, and monitoring. This study will have a positive impact on the improvement of 3D visualization capabilities and clinical decision-making and research in the context of ultrasound image.


Asunto(s)
Imagenología Tridimensional , Glándula Tiroides , Glándula Tiroides/diagnóstico por imagen , Proyectos de Investigación , Tecnología , Procesamiento de Imagen Asistido por Computador
19.
Pharmacol Res ; 202: 107121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431091

RESUMEN

Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.


Asunto(s)
Resorción Ósea , Clostridium , Osteoclastos , Propionatos , Humanos , Femenino , Ratones , Animales , Osteoclastos/metabolismo , Receptor X de Pregnano/metabolismo , Resorción Ósea/metabolismo , Osteogénesis , Estrógenos/metabolismo , Indoles/metabolismo , Hidrogeles , Ligando RANK/metabolismo , Diferenciación Celular
20.
Biomaterials ; 308: 122548, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38554642

RESUMEN

The treatment of infected wounds poses a formidable challenge in clinical practice due to the detrimental effects of uncontrolled bacterial infection and excessive oxidative stress, resulting in prolonged inflammation and impaired wound healing. In this study, we presented a MXene@TiO2 (MT) nanosheets loaded composite hydrogel named as GA/OKGM/MT hydrogel, which was formed based on the Schiff base reaction between adipic dihydrazide modified gelatin (GA)and Oxidized Konjac Glucomannan (OKGM), as the wound dressing. During the hemostasis phase, the GA/OKGM/MT hydrogel demonstrated effective adherence to the skin, facilitating rapid hemostasis. In the subsequent inflammation phase, the GA/OKGM/MT hydrogel effectively eradicated bacteria through MXene@TiO2-induced photothermal therapy (PTT) and eliminated excessive reactive oxygen species (ROS), thereby facilitating the transition from the inflammation phase to the proliferation phase. During the proliferation phase, the combined application of GA/OKGM/MT hydrogel with electrical stimulation (ES) promoted fibroblast proliferation and migration, leading to accelerated collagen deposition and angiogenesis at the wound site. Overall, the comprehensive repair strategy based on the GA/OKGM/MT hydrogel demonstrated both safety and reliability. It expedited the progression through the hemostasis, inflammation, and proliferation phases of wound healing, showcasing significant potential for the treatment of infected wounds.


Asunto(s)
Proliferación Celular , Gelatina , Hemostasis , Hidrogeles , Mananos , Titanio , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Titanio/química , Hidrogeles/química , Animales , Proliferación Celular/efectos de los fármacos , Ratones , Hemostasis/efectos de los fármacos , Gelatina/química , Mananos/química , Masculino , Terapia Fototérmica , Nanoestructuras/química , Especies Reactivas de Oxígeno/metabolismo , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...