Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Intervalo de año de publicación
1.
Talanta ; 280: 126734, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39173248

RESUMEN

Carbon monoxide (CO), a significant gas transmitter, plays a vital role in the intricate functioning of living systems and is intimately linked to a variety of physiological and pathological processes. To comprehensively investigate CO within biological system, researchers have widely adopted CORM-3, a compound capable of releasing CO, which serves as a surrogate for CO. It aids in elucidating the physiological and pathological effects of CO within living organisms and can be employed as a therapeutic drug molecule. Therefore, the pivotal role of CORM-3 necessitates the development of effective probes that can facilitate the visualization and tracking of CORM-3 in living systems. However, creating fluorescent probes for real-time imaging of CORM-3 in living species has proven to be a persisting challenge that arises from factors such as background interference, light scattering and photoactivation. Herein, the BNDN fluorescent probe, a brand-new near-infrared is proposed. Remarkably, the BNDN probe offers several noteworthy advantages, including a substantial Stokes shift (201 nm), heightened sensitivity, exceptional selectivity, and an exceedingly low CORM-3 detection limit (0.7 ppb). Furthermore, the underlying sensing mechanism has been meticulously examined, revealing a process that revives the fluorophore by reducing the complex Cu2+ to Cu+. This distinctive NIR fluorescence "turn-on" character, coupled with its larger Stokes shift, holds great promise for achieving high resolution imaging. Most impressively, this innovative probe has demonstrated its efficacy in detecting exogenous CORM-3 in living animal. It is important to underscore that these endeavors mark a rare instance of a near-infrared probes successfully detecting exogenous CORM-3 in vivo. These exceptional outcomes highlighted the potential of BNDN as a highly promising new tool for in vivo detection of CORM-3. Considering the impressive imaging capabilities demonstrated by BNDN presented in this study, we anticipate that this tool may offer a compelling avenue for shedding light on the roles of CO in future research endeavors.

2.
China CDC Wkly ; 6(32): 821-824, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39157045

RESUMEN

What is already known on this topic?: Handgrip strength (HS) serves as a diagnostic marker for low muscle strength rate (LMSR) and reflects the level of skeletal muscle. Over the past two decades, global data indicate a downward trend in HS across various countries. What is added by this report?: According to the latest national data, the mean HS among Chinese adults aged 20 years and older was recorded at 40.4 kg for males and 25.1 kg for females in 2020. A decline in HS was observed with increasing age, particularly among women. Additionally, lower HS values were reported in rural areas, whereas LMSR was more prevalent in these regions. What are the implications for public health practice?: The analysis of HS and LMSR among Chinese adults is essential for the development and implementation of targeted interventions aimed at improving HS prevalence rates. This analysis is highly significant for public health, contributing to increased public awareness of LMSR and the promotion of preventative measures.

3.
Anal Chem ; 96(33): 13379-13388, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105793

RESUMEN

Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Técnicas Electroquímicas , Receptores ErbB , Exodesoxirribonucleasas , Neoplasias Pulmonares , Mutación , Receptores ErbB/genética , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Técnicas Biosensibles , Reacción en Cadena de la Ligasa , Límite de Detección , Proteínas Virales
4.
Front Pharmacol ; 15: 1412489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983913

RESUMEN

Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.

5.
MedComm (2020) ; 5(8): e672, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081515

RESUMEN

Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.

6.
BMC Urol ; 24(1): 146, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003446

RESUMEN

BACKGROUND: LncRNA has an effective value in many diseases, which has long been applied in the diagnosis, treatment and prognosis of prostate cancer. This study focused on lncRNA PITPNA-AS1, and its diagnostic potential in prostate cancer has been explored. METHODS: The expression of PITPNA-AS1 and miR-129-5p in prostate cancer serum and sample cells was determined by real-time quantitative polymerase chain reaction (RT-qPCR). The relationship between the expression of PITPNA-AS1 and clinicopathological parameters was considered. ROC curve prompted the diagnostic value of PITPNA-AS1. The effect of PITPNA-AS1 on prostate cancer cells was verified using vitro cells assay. Luciferase activity assay and RIP assay demonstrated the sponge relationship of PITPNA-AS1 to miR-129-5p. RESULTS: PITPNA-AS1 level was increased, while miR-129-5p was obviously decreased in prostate cancer. PITPNA-AS1 expression was associated with Gleason grade, lymph node metastasis and TNM stage in patients. The area under the curve (AUC) was 0.910, with high sensitivity and specificity. PITPNA-AS1 was elucidated to directly target miR-129-5p, whereas silencing PITPNA-AS1 negatively affected prostate cancer cell proliferation, migration and invasion. Intervention of miR-129-5p inhibitor reversed the effect of silencing PITPNA-AS1 on cells. CONCLUSIONS: PITPNA-AS1 was relatively highly expressed in prostate cancer and mediated the pathophysiological process of patients, which may serve as a diagnostic indicator. Silencing of the PITPNA-AS1 sponge miR-129-5p inhibited the biological function of the cells, indicating that PITPNA-AS1 may represent a novel therapeutic target for prostate cancer.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Anciano , Humanos , Masculino , Persona de Mediana Edad , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , ARN Largo no Codificante/genética
7.
Eur J Med Chem ; 275: 116612, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38908103

RESUMEN

Aberrant activation of fibroblast growth factor receptors (FGFRs) contributes to the development and progression of multiple types of cancer. Although many FGFR inhibitors have been approved by the FDA, their long-term therapeutic efficacy is hampered by acquired resistance to gatekeeper mutations and low subtype selectivity. FGFR2 has been found to be frequently amplified or mutated in many tumors. In this study, we designed several PROTACs with different E3 ligands based on LY2874455. By screening the length of the linker and the binding site in various degraders, we obtained a novel and highly efficient FGFR2-selective degrader 28e (DC50 = 0.645 nM, DCmax = 86 %). Compound 28e selectively degraded FGFR2 and essentially avoided degradation of FGFR1,3,4 isoforms (DC50 > 300 nM). Compound 28e significantly inhibited the proliferation of FGFR2-overexpressing cell lines, including KATOIII, SNU16, and AN3CA (IC50 = 0.794 nM/0.207 nM/4.626 nM), comparable to parental inhibitors. At the same time, the preferred compound showed superiority over the parental inhibitor in kinase inhibitory activity against the gatekeeper mutant isoform FGFR2V564F (IC50 = 0.121 nM). In summary, we identified 28e as a novel selective degrader of FGFR2 with high potency and high potential to overcome resistance to gatekeeper mutation. The discovery of 28e provides new evidence for the strategy of pan-inhibitor-based development of selective degrading agents.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Mutación , Inhibidores de Proteínas Quinasas , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos
8.
Int J Ophthalmol ; 17(6): 1058-1065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895687

RESUMEN

AIM: To analyze and compare the differences among ocular biometric parameters in Han and Uyghur populations undergoing cataract surgery. METHODS: In this hospital-based prospective study, 410 patients undergoing cataract surgery (226 Han patients in Tianjin and 184 Uyghur patients in Xinjiang) were enrolled. The differences in axial length (AL), anterior chamber depth (ACD), keratometry [steep K (Ks) and flat K (Kf)], and corneal astigmatism (CA) measured using IOL Master 700 were compared between Han and Uyghur patients. RESULTS: The average age of Han patients was higher than that of Uyghur patients (70.22±8.54 vs 63.04±9.56y, P<0.001). After adjusting for age factors, Han patients had longer AL (23.51±1.05 vs 22.86±0.92 mm, P<0.001), deeper ACD (3.06±0.44 vs 2.97±0.37 mm, P=0.001), greater Kf (43.95±1.40 vs 43.42±1.69 D, P=0.001), steeper Ks (45.00±1.47 vs 44.26±1.71 D, P=0.001), and higher CA (1.04±0.68 vs 0.79±0.65, P=0.025) than Uyghur patients. Intra-ethnic male patients had longer AL, deeper ACD, and lower keratometry than female patients; however, CA between the sexes was almost similar. In the correlation analysis, we observed a positive correlation between AL and ACD in patients of both ethnicities (rHan =0.48, rUyghur =0.44, P<0.001), while AL was negatively correlated with Kf (rHan =-0.42, rUyghur =-0.64, P<0.001) and Ks (rHan =-0.38, rUyghur =-0.66, P<0.001). Additionally, Kf was positively correlated with Ks (rHan =0.89, rUyghur =0.93, P<0.001). CONCLUSION: There are differences in ocular biometric parameters between individuals of Han ethnicity in Tianjin and those of Uyghur ethnicity in Xinjiang undergoing cataract surgery. These ethnic variances can enhance our understanding of ocular diseases related to these parameters and provide guidance for surgical procedures.

9.
Plant Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889048

RESUMEN

Transcriptional reprogramming is critical for plant immunity. Several calmodulin (CaM)-binding protein 60 (CBP60) family transcription factors (TFs) in Arabidopsis (Arabidopsis thaliana), including CBP60g, Systemic Acquired Resistance Deficient 1 (SARD1), CBP60a, and CBP60b, are critical for and show distinct roles in immunity. However, there are additional CBP60 members whose function is unclear. We report here that Arabidopsis CBP60c-f, four uncharacterized CBP60 members, play redundant roles with CBP60b in the transcriptional regulation of immunity responses, whose pCBP60b-driven expression compensates the loss of CBP60b. By contrast, neither CBP60g nor SARD1 is inter-changeable with CBP60b, suggesting clade-specific functionalization. We further show that function of CBP60b clade TFs relies on DNA-binding domains (DBDs) and CaM-binding domains, suggesting that they are downstream components of calcium signaling. Importantly, we demonstrate that CBP60s encoded in earliest land plant lineage Physcomitrium patens and Selaginella moellendorffii, are functionally homologous to Arabidopsis CBP60b, suggesting that the CBP60b clade contains the prototype TFs of the CBP60 family. Furthermore, tomato and cucumber CBP60b-like genes rescue the defects of Arabidopsis cbp60b and activate the expression of tomato and cucumber SALICYLIC ACID INDUCTION DEFICIIENT2 (SID2) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes, suggesting that immune response pathways centered on CBP60b are also evolutionarily conserved. Together, these findings suggest CBP60b clade transcription factors are functionally conserved in evolution and positively mediate immunity.

10.
Sci Rep ; 14(1): 10319, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705877

RESUMEN

Seismic imaging techniques play a crucial role in interpreting subsurface geological structures by analyzing the propagation and reflection of seismic waves. However, traditional methods face challenges in achieving high resolution due to theoretical constraints and computational costs. Leveraging recent advancements in deep learning, this study introduces a neural network framework that integrates Transformer and Convolutional Neural Network (CNN) architectures, enhanced through Adaptive Spatial Feature Fusion (ASFF), to achieve high-resolution seismic imaging. Our approach directly maps seismic data to reflection models, eliminating the need for post-processing low-resolution results. Through extensive numerical experiments, we demonstrate the outstanding ability of this method to accurately infer subsurface structures. Evaluation metrics including Root Mean Square Error (RMSE), Correlation Coefficient (CC), and Structural Similarity Index (SSIM) emphasize the model's capacity to faithfully reconstruct subsurface features. Furthermore, noise injection experiments showcase the reliability of this efficient seismic imaging method, further underscoring the potential of deep learning in seismic imaging.

11.
Phytopathology ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38810273

RESUMEN

Timely and accurate identification of peanut pests and diseases, coupled with effective countermeasures, are pivotal for ensuring high-quality and efficient peanut production. Despite the prevalence of pests and diseases in peanut cultivation, challenges such as minute disease spots, the elusive nature of pests, and intricate environmental conditions often lead to diminished identification accuracy and efficiency. Moreover, continuous monitoring of peanut health in real-world agricultural settings demands solutions that are computationally efficient. Traditional deep learning models often require substantial computational resources, limiting their practical applicability. In response to these challenges, we introduce LSCDNet (Lightweight Sandglass and Coordinate Attention Network), a streamlined model derived from DenseNet. LSCDNet preserves only the transition layers to reduce feature map dimensionality, simplifying the model's complexity. The inclusion of a sandglass block bolsters features extraction capabilities, mitigating potential information loss due to dimensionality reduction. Additionally, the incorporation of coordinate attention addresses issues related to positional information loss during feature extraction. Experimental results showcase that LSCDNet achieved impressive metrics with an accuracy, precision, recall, and F1 score of 96.67%, 98.05%, 95.56%, and 96.79%, respectively, while maintaining a compact parameter count of merely 0.59M. When compared to established models such as MobileNetV1, MobileNetV2, NASNetMobile, DenseNet-121, InceptionV3, and Xception, LSCDNet outperformed with accuracy gains of 2.65%, 4.87%, 8.71%, 5.04%, 6.32%, and 8.2% respectively, accompanied by substantially fewer parameters. Lastly, we deployed the LSCDNet model on Raspberry Pi for practical testing and application, achieving an average recognition accuracy of 85.36%, thereby meeting real-world operational requirements.

12.
Plant Mol Biol ; 114(3): 64, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809410

RESUMEN

Pollen tube growth is an essential step leading to reproductive success in flowering plants, in which vesicular trafficking plays a key role. Vesicular trafficking from endoplasmic reticulum to the Golgi apparatus is mediated by the coat protein complex II (COPII). A key component of COPII is small GTPase Sar1. Five Sar1 isoforms are encoded in the Arabidopsis genome and they show distinct while redundant roles in various cellular and developmental processes, especially in reproduction. Arabidopsis Sar1b is essential for sporophytic control of pollen development while Sar1b and Sar1c are critical for gametophytic control of pollen development. Because functional loss of Sar1b and Sar1c resulted in pollen abortion, whether they influence pollen tube growth was unclear. Here we demonstrate that Sar1b mediates pollen tube growth, in addition to its role in pollen development. Although functional loss of Sar1b does not affect pollen germination, it causes a significant reduction in male transmission and of pollen tube penetration of style. We further show that membrane dynamics at the apex of pollen tubes are compromised by Sar1b loss-of-function. Results presented provide further support of functional complexity of the Sar1 isoforms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Regulación de la Expresión Génica de las Plantas , Polen/crecimiento & desarrollo , Polen/genética , Polen/metabolismo , Plantas Modificadas Genéticamente , Germinación/genética
13.
BMC Oral Health ; 24(1): 525, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702623

RESUMEN

OBJECTIVE: To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS: The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS: The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).


Asunto(s)
Placa Dental , Halitosis , Antisépticos Bucales , Polilisina , Humanos , Halitosis/prevención & control , Halitosis/tratamiento farmacológico , Halitosis/microbiología , Antisépticos Bucales/uso terapéutico , Placa Dental/microbiología , Placa Dental/prevención & control , Método Doble Ciego , Masculino , Femenino , Polilisina/uso terapéutico , Adulto , Pruebas de Sensibilidad Microbiana , Adulto Joven , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Fusobacterium nucleatum/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Péptidos/uso terapéutico , Péptidos/farmacología , Aggregatibacter actinomycetemcomitans/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos
14.
Bioorg Chem ; 148: 107439, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754310

RESUMEN

PRMT6 is a member of the protein arginine methyltransferase family, which participates in a variety of physical processes and plays an important role in the occurrence and development of tumors. Using small molecules to design and synthesize targeted protein degraders is a new strategy for drug development. Here, we report the first-in-class degrader SKLB-0124 for PRMT6 based on the hydrophobic tagging (HyT) method.Importantly, SKLB-0124 induced proteasome dependent degradation of PRMT6 and significantly inhibited the proliferation of HCC827 and MDA-MB-435 cells. Moreover, SKLB-0124 effectively induced apoptosis and cell cycle arrest in these two cell lines. Our data clarified that SKLB-0124 is a promising selective PRMT6 degrader for cancer therapy which is worthy of further evaluation.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Relación Dosis-Respuesta a Droga , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Proteínas Nucleares
15.
BMC Genomics ; 25(1): 378, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632523

RESUMEN

OBJECTIVE: This study aims to analyze the molecular characteristics of the novel coronavirus (SARS-CoV-2) Omicron variant BA.2.76 in Jining City, China. METHODS: Whole-genome sequencing was performed on 87 cases of SARS-CoV-2 infection. Evolutionary trees were constructed using bioinformatics software to analyze sequence homology, variant sites, N-glycosylation sites, and phosphorylation sites. RESULTS: All 87 SARS-CoV-2 whole-genome sequences were classified under the evolutionary branch of the Omicron variant BA.2.76. Their similarity to the reference strain Wuhan-Hu-1 ranged from 99.72 to 99.74%. In comparison to the reference strain Wuhan-Hu-1, the 87 sequences exhibited 77-84 nucleotide differences and 27 nucleotide deletions. A total of 69 amino acid variant sites, 9 amino acid deletions, and 1 stop codon mutation were identified across 18 proteins. Among them, the spike (S) protein exhibited the highest number of variant sites, and the ORF8 protein showed a Q27 stop mutation. Multiple proteins displayed variations in glycosylation and phosphorylation sites. CONCLUSION: SARS-CoV-2 continues to evolve, giving rise to new strains with enhanced transmission, stronger immune evasion capabilities, and reduced pathogenicity. The application of high-throughput sequencing technologies in the epidemic prevention and control of COVID-19 provides crucial insights into the evolutionary and variant characteristics of the virus at the genomic level, thereby holding significant implications for the prevention and control of the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Genómica , China , Aminoácidos , Nucleótidos
16.
Plant Cell ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635962

RESUMEN

Protein S-acylation catalyzed by protein S-acyl transferases (PATs) is a reversible lipid modification regulating protein targeting, stability, and interaction profiles. PATs are encoded by large gene families in plants, and many proteins including receptor-like cytoplasmic kinases (RLCKs) and receptor-like kinases (RLKs) are subject to S-acylation. However, few PATs have been assigned substrates, and few S-acylated proteins have known upstream enzymes. We report that Arabidopsis (Arabidopsis thaliana) class A PATs redundantly mediate pollen tube guidance and participate in the S-acylation of POLLEN RECEPTOR KINASE1 (PRK1) and LOST IN POLLEN TUBE GUIDANCE1 (LIP1), a critical RLK or RLCK for pollen tube guidance, respectively. PAT1, PAT2, PAT3, PAT4, and PAT8, collectively named PENTAPAT for simplicity, are enriched in pollen and show similar subcellular distribution. Functional loss of PENTAPAT reduces seed set due to male gametophytic defects. Specifically, pentapat pollen tubes are compromised in directional growth. We determine that PRK1 and LIP1 interact with PENTAPAT, and their S-acylation is reduced in pentapat pollen. The plasma membrane (PM) association of LIP1 is reduced in pentapat pollen, whereas point mutations reducing PRK1 S-acylation affect its affinity with its interacting proteins. Our results suggest a key role of S-acylation in pollen tube guidance through modulating PM receptor complexes.

17.
Exp Eye Res ; 243: 109903, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38642601

RESUMEN

Pseudoexfoliation syndrome (PEX) is characterized by the deposition of fibrous pseudoexfoliation material (PEXM) in the eye, and secondary glaucoma associated with this syndrome has a faster and more severe clinical course. The incidence of PEX and pseudoexfoliative glaucoma (PEXG) exhibits ethnic clustering; however, few proteomic studies related to PEX and PEXG have been conducted in Asian populations. Therefore, we aimed to conduct proteomic analysis on the aqueous humor (AH) obtained from Uyghur patients with cataracts, those with PEX and cataracts, and those with PEXG and cataracts to better understand the molecular mechanisms of the disease and identify its potential biomarkers. To this end, AH was collected from patients with cataracts (n = 10, control group), PEX with cataracts (n = 10, PEX group), and PEXG with cataracts (n = 10, PEXG group) during phacoemulsification. Label-free quantitative proteomic techniques combined with bioinformatics were used to identify and analyze differentially expressed proteins (DEPs) in the AH of PEX and PEXG groups. Then, independent AH samples (n = 12, each group) were collected to validate DEPs by enzyme-linked immunosorbent assay (ELISA). The PEX group exhibited 25 DEPs, while the PEXG group showed 44 DEPs, both compared to the control group. Subsequently, we found three newly identified proteins in both PEX and PEXG groups, wherein FRAS1-related extracellular matrix protein 2 (FREM2) and osteoclast-associated receptor (OSCAR) exhibited downregulation, whereas coagulation Factor IX (F9) displayed upregulation. Bioinformatics analysis suggested that extracellular matrix interactions, abnormal blood-derived proteins, and lysosomes were mainly involved in the process of PEX and PEXG, and the PPI network further revealed F9 may serve as a potential biomarker for both PEX and PEXG. In conclusion, this study provides new information for understanding the proteomics of AH in PEX and PEXG.


Asunto(s)
Humor Acuoso , Síndrome de Exfoliación , Proteínas del Ojo , Proteómica , Humanos , Síndrome de Exfoliación/metabolismo , Humor Acuoso/metabolismo , Proteómica/métodos , Masculino , Femenino , Anciano , Proteínas del Ojo/metabolismo , China/epidemiología , Glaucoma de Ángulo Abierto/metabolismo , Persona de Mediana Edad , Biomarcadores/metabolismo , Ensayo de Inmunoadsorción Enzimática , Catarata/metabolismo , Presión Intraocular/fisiología
19.
Nat Commun ; 15(1): 2292, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38480740

RESUMEN

Triple-negative breast cancer (TNBC) is a highly metastatic and heterogeneous type of breast cancer with poor outcomes. Precise, non-invasive methods for diagnosis, monitoring and prognosis of TNBC are particularly challenging due to a paucity of TNBC biomarkers. Glycans on extracellular vesicles (EVs) hold the promise as valuable biomarkers, but conventional methods for glycan analysis are not feasible in clinical practice. Here, we report that a lectin-based thermophoretic assay (EVLET) streamlines vibrating membrane filtration (VMF) and thermophoretic amplification, allowing for rapid, sensitive, selective and cost-effective EV glycan profiling in TNBC plasma. A pilot cohort study shows that the EV glycan signature reaches 91% accuracy for TNBC detection and 96% accuracy for longitudinal monitoring of TNBC therapeutic response. Moreover, we demonstrate the potential of EV glycan signature for predicting TNBC progression. Our EVLET system lays the foundation for non-invasive cancer management by EV glycans.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Biomarcadores de Tumor , Proyectos Piloto , Vesículas Extracelulares/patología , Polisacáridos
20.
Biomedicines ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38540299

RESUMEN

Periodontitis and inflammatory bowel disease (IBD) are both chronic inflammatory diseases that are characterized by abnormal host immune responses and microbiota dysbiosis. Emerging evidence implies potential associations between periodontitis and IBD. Porphyromonas gingivalis (P. gingivalis), a primary cause of periodontitis, is thought to play a role in the development of IBD through the oral-gut disease axis. However, the precise mechanisms of its involvement remain enigmatic. In this narrative review, we begin with a discussion of the bidirectional relationship between periodontitis and IBD and the involvement of P. gingivalis in each of the two diseases. Further, we summarize the possible routes by which P. gingivalis links periodontitis and IBD through the oral-gut axis, as well as the underlying mechanisms of its involvement in the pathogenesis of IBD. Collectively, P. gingivalis participates in the progression of IBD through gut dysbiosis, impairment of the intestinal barrier, release of inflammatory mediators, and disturbance of the immune response. The above findings may provide new insights for exploring novel biomarkers and potential therapeutic approaches for IBD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA