Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 240: 113700, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35636238

RESUMEN

Fe biofortification and Cd mitigation in rice is essential for human health, thus the effects of fertilization with Fe on Cd uptake and distribution in rice need to be comprehensively studied. In this study, we investigated the roles of root iron (Fe)/manganese (Mn) plaques, root cell wall, organic acid, and expressions of Cd-transport related genes in restricting Cd uptake and translocation. The rice plants were exposed to 1 µM CdCl2 with or without the addition of three doses of Fe at 5, 50, and 500 µM EDTA-Na2Fe. The results showed that increasing supply of Fe remarkably reduced Cd accumulation in the shoots, mainly because of inhibited translocation of Cd from roots to shoots. As compared to 5 µM Fe treatment, 500 µM Fe significantly increased the ionic soluble pectin (ISP) content and decreased citric acid (CA) in the roots, thereby providing more Cd-binding sites in the cell wall of roots and reducing the mobility of Cd in xylem. Plant Fe status-mediated CA act as the main chelator for Cd mobilization, rather than through decreasing the pH. However, the plants supplied with low Fe or excess Fe facilitated the uptake of Cd in rice roots, as low Fe up-regulated the expression of Cd-transport related genes and excess Fe enhanced Cd enrichment on the root by iron plaque. Importantly, soil fertilization with Fe strongly reduced Cd accumulation in rice grain. Thus, optimizing the soil environmental Fe could effectively reduce Cd accumulation in the shoots by immobilizing Cd in the roots.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Pared Celular/metabolismo , Quelantes/metabolismo , Quelantes/farmacología , Humanos , Hierro/química , Oryza/metabolismo , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Xilema/metabolismo
2.
Sci Total Environ ; 824: 153868, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176384

RESUMEN

Sulfate and water management can be respectively applied to control Cd accumulation in rice, but the interaction mechanisms remain unclear. Three water management coupled with five sulfate application concentrations were employed to investigate rice Cd uptake. Results showed there was a significant interaction between sulfate application and soil redox state, and the highest sulfate treatments reduced rice grain Cd by 63.2, 53.5, and 59.4% under the flooding, flooding-moist alternate (FM), and moist irrigation (M) conditions, respectively. It could be explained by the reduction in rhizosphere soil available Cd and lower transport coefficient from root to aboveground. The Desulfovibrio was demonstrated to participate in CdS precipitation, and its abundance was promoted by sulfate especially under flooding. Additionaly, sulfate application facilitated Cd bounded to FeMn oxides, as rhizosphere soil pH raising under flooding. Under FM and M treatments, sulfate application reduced the abundance of Fe-reducing bacteria Geobacter, and correspondingly reduced Fe and Cd availability in rhizosphere soil. Summarily, Cd transfer from soil to rice can be reduced by applying sulfate fertilizer; which is favored by higher soil moisture because of the higher abundance of Desulfovibrio and lower abundance of Geobacter.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Fertilización , Oxidación-Reducción , Rizosfera , Suelo , Contaminantes del Suelo/análisis , Sulfatos , Azufre
3.
Chemosphere ; 291(Pt 1): 132712, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34715104

RESUMEN

Strains of the genus Mucilaginibacter, belonging to the phylum Bacteroidetes, have been noted for exhibiting high genome plasticity and for the vigorous production of extracellular polymeric substances (EPS). Here we analyzed the composition and properties of EPS generated by M. rubeus P2, isolated from a gold-copper mine and exhibiting extremely high resistance to multiple heavy metals. Production of EPS increased significantly upon exposure to elevated concentrations of Cu(II) and Zn(II), but not Au(III). In addition, the EPS produced by M. rubeus P2 displayed extremely high bio-adsorption of As(III), Cu(II) and Au(III), but not of Zn(II). Moreover, EPS production in Mucilaginibacter rubeus P2 exposed to 1 mM of Cu(II) was 8.5 times higher than EPS production in the same strain without metal (loid)-exposure. These findings constitute the basis for a future use of these EPS-overproducing bacteria in bioremediation of heavy metal contaminated environments. The functional groups, especially -SH, CO, and N-H/C-N in the fingerprint zone of glutathione (GSH) and polysaccharides-like components of EPS, were the main components of EPS involved in both Zn(II) and Cu(II) binding and removal. Around 31.22% and 5.74% of Cu(II)-treated EPS was shown to exist as (CO) structures and these structures were converted into C-OH and O-C-O upon exposure to Cu(II), respectively. In contrast, (C-OH/C-O-C/P-O-C) groups in EPS were observed to be positively correlated to increasing concentrations of Zn(II) in strain P2. Furthermore, the complete genome of M. rubeus P2 helped us to identify 350 genes involved in carbohydrate metabolism, some of which are predicted to be involved in EPS production and modification. This work describes the first detailed biochemical and biophysical analysis of EPS from any strain of Mucilaginibacter with unique heavy metal binding properties. The results will be useful for a better understanding of how microorganisms such as M. rubeus P2 adapt to heavy metal polluted environments and how this knowledge can potentially be harnessed in biotechnological applications such as industrial waste water purification, bioremediation of heavy metal contaminated soil and beneficial plant microbe interactions. The toolbox provided in this paper will provide a valuable basis for future studies.


Asunto(s)
Metales Pesados , Zinc , Adsorción , Bacteroidetes , Cobre
4.
Ecotoxicol Environ Saf ; 211: 111914, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454593

RESUMEN

Bioremediation of Cd contaminated environments can be assisted by plant-growth-promoting bacteria (PGPB) enabling plant growth in these sites. Here a gram-negative Burkholderia contaminans ZCC was isolated from mining soil at a copper-gold mine. When exposed to Cd(II), ZCC displayed high Cd resistance and the minimal inhibitory concentration was 7 mM in LB medium. Complete genome analysis uncovered B. contaminans ZCC contained 3 chromosomes and 2 plasmids. One of these plasmids was shown to contain a multitude of heavy metal resistance determinants including genes encoding a putative Cd-translocating PIB-type ATPase and an RND-type related to the Czc-system. These additional heavy metal resistance determinants are likely responsible for the increased resistance to Cd(II) and other heavy metals in comparison to other strains of B. contaminans. B. contaminans ZCC also displayed PGPB traits such as 1-aminocyclopropane-1-carboxylate deaminase activity, siderophore production, organic and inorganic phosphate solubilization and indole acetic acid production. Moreover, the properties and Cd(II) binding characteristics of extracellular polymeric substances was investigated. ZCC was able to induce extracellular polymeric substances production in response to Cd and was shown to be chemically coordinated to Cd(II). It could promote the growth of soybean in the presence of elevated concentrations of Cd(II). This work will help to better understand processes important in bioremediation of Cd-contaminated environment.


Asunto(s)
Adaptación Fisiológica/fisiología , Burkholderia/fisiología , Cadmio/toxicidad , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Cadmio/metabolismo , Ácidos Indolacéticos , Metales Pesados/análisis , Minería , Desarrollo de la Planta , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis , Glycine max/metabolismo
5.
Chemosphere ; 227: 289-298, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30999170

RESUMEN

Residual dichlorodiphenyltrichloroethane (DDT) in the environment and a continuously increasing atmospheric carbon dioxide (CO2) concentration are two issues that have received a lot of attention. This study was conducted using a pot experiment to investigate the interactive effects of elevated CO2 and DDT on the uptake of DDT, the physiological responses and the resulting health risks in three vegetables. These vegetables included Brassica juncea var. foliosa Bailey (B. Bailey), Brassica campestris L. var. communis Tsen et Lee Suzhou Qing (B. Lee) and Brassica campestris L. ssp. pekinensis (Lour.) Olsson Chun Dawang (B. Olsson). Two levels of CO2 and four DDT treatment levels were set up. Results showed 5 mg kg-1 DDT significantly reduced the shoot biomass of B. Bailey when compared to 0 mg kg-1 DDT treatment under ambient CO2 condition. Elevated CO2 concentration stimulated the growth of B. Bailey and B. Lee, increased the DDT uptake in the shoots of both vegetables and the values of some photosynthesis indices, and triggered the activity of peroxidase and catalase in the shoots when compared to the related ambient CO2 treatment. Elevated CO2 concentration increased the values of hazard indexes for non-carcinogenic and cancer risks of all vegetables when compared to the individual ambient CO2 treatment (each of vegetable has an ambient CO2 treatment), especially for B. Bailey (increase amplitude of 123.81%-127.78% at 5 mg kg-1 DDT). Long-term ingestion with these DDT-polluted vegetables might result in an elevated carcinogenic risk and elevated atmospheric CO2 may enhance the non-carcinogenic and carcinogenic risks.


Asunto(s)
Brassica/toxicidad , Dióxido de Carbono , Exposición a Riesgos Ambientales/efectos adversos , Residuos de Plaguicidas/toxicidad , Hojas de la Planta/toxicidad , Verduras/toxicidad , Dióxido de Carbono/efectos adversos , Dióxido de Carbono/metabolismo , DDT/efectos adversos , Contaminación Ambiental/efectos adversos , Contaminación de Alimentos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Medición de Riesgo
6.
Appl Opt ; 56(19): 5501-5510, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29047508

RESUMEN

The theoretical formulation based on rigorous transmission-line networks is developed for a general mode conversion problem and lays the groundwork for a simpler yet more efficient graphical design approach for hybrid plasmonic mode converters (HPMCs). The concurrence of co- and cross-polarization conversion to and among higher-order photonic and HP modes followed by subsequent power redistributions and losses over the course of the HPMC can lead to performance degradation and largely determines the silicon core thickness. Using gradient ascent of the TM polarization fraction incorporated with modal index contours sets critical perturbation parameters for required transverse structural asymmetry. Polarization reversal estimates are shown to be practically applicable for about 60% of the total device length. The mode conversion efficiency (MCE), insertion loss (IL), and the polarization conversion efficiency of the proposed HPMC (<7×0.4 µm2) at λ0=1550 nm are 90.04%, 0.4691 dB, and 99.96%, respectively. The 85%-bandwidth of the MCE is 135 nm, while the IL stays below 0.5 dB over a 68-nm spectral range.

7.
Antonie Van Leeuwenhoek ; 107(6): 1591-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25896306

RESUMEN

A metal-resistant and phosphate-solubilising bacterium, designated as strain D414(T), was isolated from heavy metal (Pb, Cd, Cu and Zn)-polluted paddy soils at the surrounding area of Dabao Mountain Mine in Southeast China. The minimum inhibitory concentrations of heavy metals for strain D414(T) were 2000 mg L(-1) (Cd), 800 mg L(-1) (Pb), 150 mg L(-1) (Cu) and 2500 mg L(-1) (Zn). The strain possessed plant growth-promoting properties, such as 1-aminocyclopropane-1-carboxylate assimilation, indole production and phosphate solubilisation. Analysis of 16S rRNA gene sequence indicated that the isolate is a member of the genus Burkholderia where strain D414(T) formed a distinct phyletic line with validly described Burkholderia species. Strain D414(T) is closely related to Burkholderia tropica DSM 15359(T), B. bannensis NBRC E25(T) and B. unamae DSM 17197(T), with 98.5, 98.3 and 98.3 % sequence similarities, respectively. Furthermore, less than 34 % DNA-DNA relatedness was detected between strain D414(T) and the type strains of the phylogenetically closest species of Burkholderia. The dominant fatty acids of strain D414(T) were C14:0, C16:0, C17:0 cyclo and C18:1 ω7c. The DNA G+C content was 62.3 ± 0.5 mol%. On the basis of genotypic, phenotypic and phylogenetic data, strain D414(T) represents a novel species, for which the name Burkholderia metalliresistens sp. nov. is proposed, with D414(T) (=CICC 10561(T) = DSM 26823(T)) as the type strain.


Asunto(s)
Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Farmacorresistencia Bacteriana , Metales Pesados/toxicidad , Fosfatos/metabolismo , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Burkholderia/genética , Burkholderia/fisiología , China , Análisis por Conglomerados , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Ácidos Grasos/análisis , Indoles/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Contaminantes del Suelo/toxicidad
8.
J Zhejiang Univ Sci B ; 12(4): 313-25, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21462388

RESUMEN

This study was conducted to investigate the combined effects of elevated CO(2) levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam. and Lolium perenne L. exposed to two CO(2) levels (360 and 1 000 µl/L) and three Cd levels (0, 4, and 16 mg/L) under hydroponic conditions. The results show that elevated levels of CO(2) increased shoot biomass more, compared to root biomass, but decreased Cd concentrations in all plant tissues. Cd exposure caused toxicity to both Lolium species, as shown by the restrictions of the root morphological parameters including root length, surface area, volume, and tip numbers. These parameters were significantly higher under elevated levels of CO(2) than under ambient CO(2), especially for the number of fine roots. The increases in magnitudes of those parameters triggered by elevated levels of CO(2) under Cd stress were more than those under non-Cd stress, suggesting an ameliorated Cd stress under elevated levels of CO(2). The total Cd uptake per pot, calculated on the basis of biomass, was significantly greater under elevated levels of CO(2) than under ambient CO(2). Ameliorated Cd toxicity, decreased Cd concentration, and altered root morphological traits in both Lolium species under elevated levels of CO(2) may have implications in food safety and phytoremediation.


Asunto(s)
Cadmio/farmacocinética , Cadmio/toxicidad , Dióxido de Carbono/farmacología , Lolium/efectos de los fármacos , Biodegradación Ambiental , Transporte Biológico Activo/efectos de los fármacos , Biomasa , Cambio Climático , Inocuidad de los Alimentos , Lolium/crecimiento & desarrollo , Lolium/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Especificidad de la Especie , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...