Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicology ; 503: 153740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316350

RESUMEN

Bupivacaine, a common amide local anesthetic, can provide effective analgesia or pain relief but can also cause neurotoxicity, which remains a mounting concern in clinic and animal care. However, the precise underlying mechanisms have not been fully elucidated. A natural compound, notoginsenoside R1 (NG-R1) has been reported to exhibit a neuroprotective role in stress conditions. In this study, we explored the function and mechanism of NG-R1 in alleviating bupivacaine-induced neurotoxicity in mouse hippocampal neuronal (HT-22) and mouse neuroblastoma (Neuro-2a) cell lines. Our results exhibited that NG-R1 treatment can significantly rescue the decline of cell survival induced by bupivacaine. Tunel staining and western blotting showed that NG-R1 could attenuate BPV­induced cell apoptosis. Besides, we focused on Mcl1 as a potential target as it showed opposite expression tendency in response to NG-R1 and bupivacaine exposure. Mcl1 knockdown blocked the inhibitory effect of NG-R1 on cell apoptosis against bupivacaine treatment. Intriguingly, we found that NG-R1 can upregulate Mcl1 transcription by activating Stat3 and promote its nuclear translocation. In addition, NG-R1 can also promote Jak1 phosphorylation and docking analysis provide a predicted model for interaction between NG-R1 and phosphorylated Jak1. Taken together, our results demonstrated that NG-R1 can attenuate bupivacaine induced neurotoxicity by activating Jak1/Stat3/Mcl1 pathway.


Asunto(s)
Ginsenósidos , Síndromes de Neurotoxicidad , Ratones , Animales , Bupivacaína/toxicidad , Ginsenósidos/farmacología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/prevención & control , Síndromes de Neurotoxicidad/metabolismo , Línea Celular , Apoptosis
2.
Life Sci ; 335: 122239, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944638

RESUMEN

Oral squamous cell carcinoma (OSCC) is the most prevalent aggressive form of HNSC and treated with platinum-based chemotherapy as initial therapy. However, the development of acquired resistance and neurotoxicity to platinum agents poses a significant challenge to treat locally advanced OSCC. Notably, IDO1+ CAFs could promote immunosuppressive TME for OSCC progression. Therefore, we developed a potent IDO1 inhibitor navoximod to overcome chemo-immune resistance via an antitumor immune effect synergized with cisplatin in SCC-9 co-cultured IDO1+/IDO1- CAFs and SCC-7/IDO1+ CAFs-inoculated mice. The in vitro biological assays on IDO1+ CAFs co-cultured OSCC cancer cells supported that combined navoximod with cisplatin could mitigate chemo-immune resistance through blockading IDO1+ CAFs-secreted kynurenine (Kyn)-aryl hydrocarbon receptor (AhR)-IL-6 via suppressing p-STAT3/NF-κB signals and ceasing AhR-induced loss of pol ζ-caused chromosomal instability (CIN). Moreover, the combination elicited antitumor immunity via reducing IDO1+ CAFs-secreted Kyn/AhR and conferring pol ζ in SCC-7/IDO1+ CAFs-inoculated BALB/c mice. Meanwhile, the combination could block cisplatin-induced neurotoxicity and not interfere with chemotherapy. Taken together, the study investigated the promising therapeutic potential of combined navoximod with cisplatin to mitigate tumoral immune resistance via alleviating IDO1+ CAFs-secreted immune-suppression and CIN-caused cisplatin resistance, providing a paradigm for combined chemo-immunotherapy to prolong survival in patients with OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Ratones , Animales , Quinurenina , Cisplatino/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Interleucina-6 , Neoplasias de la Boca/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Receptores de Hidrocarburo de Aril , Indolamina-Pirrol 2,3,-Dioxigenasa
4.
Comb Chem High Throughput Screen ; 26(5): 938-949, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35490316

RESUMEN

OBJECTIVE: As a subgroup of lung cancer, small cell lung cancer (SCLC) is characterized by a short tumor doubling time, high rates of early occurred distant cancer spread and poor outcomes. Our study aimed to identify novel molecular markers associated with SCLC prognosis. METHODS: Microarray data from the Gene Expression Omnibus (GEO) database of SCLC tumors and paired normal tissues were obtained. In the dataset, Differentially expressed genes (DEGs) which were identified by comparing gene expression between normal lung and SCLC samples, were screened using the R language. The STRING database was used to map protein-protein interaction (PPI) networks, and these were visualized with the Cytoscape software. Go enrichment analysis and prediction were performed using the Metascape database and the results were visualized. Autophagy-related prognostic genes were identified by univariate COX regression analysis. Subsequently, stepwise model selection using the Akaike information criterion (AIC) and multivariate COX regression model was performed to construct DEGs signature. Survival receiver operating characteristic (ROC) analysis was used to assess the performance of survival prediction. At last, we evaluated the differences in drug sensitivity of the two groups of patients to common chemotherapeutic drugs and small-molecule targeted drugs. RESULTS: A total of 441 identified DE genes, including 412 downregulated and 29 upregulated genes were identified. GO enrichment analyses showed that DEGs were significantly enriched in the collagen-containing extracellular matrix and extracellular matrix organization. 16 genes were individually associated with OS in univariate analyses. The high expression of 6 genes (HIST1H4L, RP11-16O9.2, SNORA71A, SELV, FAM66A and BRWD1-AS1)) was associated with the poor prognosis of SCLC patients. To predict patients' outcomes, we developed an individual's risk score model based on the 6 genes. We found that SCLC patients with a low-risk score had significantly better survival than those with a high-risk score. What's more, association analysis between clinicopathological factors and gene signature showed the risk score was higher in patients with higher clinical stage or T stage. What's more, the patients in the high-risk score group had better treatment effects for etoposide and docetaxel. This suggests that our model can guide clinical treatment decisions. CONCLUSION: A novel six-gene signature was determined for prognostic prediction in SCLC. Our findings may provide new insights into the precise treatment and prognosis prediction of SCLC.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Pronóstico , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Carcinoma Pulmonar de Células Pequeñas/genética , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Bases de Datos Factuales , Biomarcadores de Tumor/genética
5.
Cancer Med ; 12(2): 2089-2103, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771026

RESUMEN

Esophageal cancer (EC) is an aggressive malignancy that accounts for numerous cancer-related deaths worldwide. The multimodal combination therapy approach can be potentially used to treat EC effectively. However, distinct biomarker of significant specificity are still needed to develop individualized treatment strategies and provide accurate prognostic predictions. Therefore, we aimed to investigate the associated genes subtypes identified were, IFN-γDominant, Inflammatory, Lymphocyte Depleted, etc. and construct a risk model based on these genes to predict the overall survival (OS) of patients suffering from EC. Three immune subtypes were defined in the Cancer Genome Atlas (TCGA) cohort with different tumor microenvironment (TME) and clinical outcomes based on radio-differentiated immune genes. Subsequently, a risk model of immune characteristics included the immune cell infiltration levels and pathway activity was developed based on the genomic changes between the subtypes. In the TCGA dataset, as well as in subgroup analysis with different stages, gender, age, and pathological type, a high-risk score was identified as an adverse factor for OS using the method of the univariate Cox regression analysis and tROC analysis. Furthermore, it was observed that the high-risk group was characterized by depleted immunophenotype, active cell metabolism, and a high tumor mutation burden (TMB). The low-risk group was characterized by high TME abundance and active immune function. Differences in the biological genotypes may account for the differences in the prognosis and treatment response. Extensive research was carried out, and the results revealed that the low-risk group exhibited a significant level of therapeutic advantage in the field of immunotherapy. A risk model was developed based on the immune characteristics. It can be used to optimize risk stratification for patients suffering from EC. The results can potentially help provide new perspectives on treatment methods.


Asunto(s)
Neoplasias Esofágicas , Humanos , Pronóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Biología Computacional , Genómica , Inmunoterapia , Microambiente Tumoral/genética
6.
Electrophoresis ; 43(3): 464-471, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34611912

RESUMEN

We developed a low-cost polymer-film spiral inertial microfluidic device for the effective size-dependent separation of malignant tumor cells. The device was fabricated in polymer films by rapid laser cutting and chemical bonding. After fabricating the prototype device, the separation performance of our device was evaluated using particles and cells. The effects of operational flow rate, cell diameter, and cell concentration on the separation performance were explored. Our device successfully separated tumor cells from polydisperse white blood cells according to their different migration modes and lateral positions. Then, the separation of rare cells was carried out using the high-concentration lysed blood spiked with 200 tumor cells. Experimental results showed that 83.90% of the tumor cells could be recovered, while 99.87% of white blood cells could be removed. We successfully employed our device for processing clinical pleural effusion samples from patients with advanced metastatic breast cancer. Malignant tumor cells with an average purity of 2.37% could be effectively enriched, improving downstream diagnostic accuracy. Our device offers the advantages of label-free operation, low cost, and fast fabrication, thus being a potential tool for effective cell separation.


Asunto(s)
Técnicas Analíticas Microfluídicas , Neoplasias , Separación Celular , Humanos , Dispositivos Laboratorio en un Chip , Microfluídica , Polímeros
7.
Biochem Cell Biol ; 99(6): 707-716, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34723651

RESUMEN

This study aimed to explore the effect of ultrasound-stimulated microbubbles (USMBs) on tumor radiosensitivity in esophageal carcinoma (EC). The human EC cell line KYSE-510 and human umbilical vein endothelial cells (HUVECs) were exposed to radiation alone or in combination with USMBs. CCK-8, colony formation, and EdU assays were used to determine cell viability and proliferation. Cell apoptosis was assessed using flow cytometry. Cell migration and invasion were examined by wound healing and transwell assays. Western blotting showed that the protein levels were associated with apoptosis, epithelial-mesenchymal transition (EMT), and angiogenesis. An endothelial tube-forming assay was used to detect the angiogenic activity of HUVECs. Xenograft experiments were used to examine the effect of USMBs on EC radiosensitivity in vivo. The expression of Ki-67 in tumors was detected using immunohistochemistry. USMBs enhanced the suppressive effect of radiation on proliferation, migration, invasion, and EMT, and promoted radiation-induced apoptosis in EC cells in vitro. Angiogenesis in EC was suppressed by radiation and further inhibited by the combination of radiation and USMBs. In vivo experiments revealed that USMBs increased the radiosensitivity of ECs to tumor growth. Collectively, USMBs enhanced the effects of radiotherapy in esophageal carcinoma.


Asunto(s)
Carcinoma , Neoplasias Esofágicas , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Neoplasias Esofágicas/radioterapia , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microburbujas
8.
Bioengineered ; 12(1): 3000-3013, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34180353

RESUMEN

Ultrasound (US) is reported to improve the delivery efficiency of drugs loading onto large nanoparticles due to the sonoporation effect. Microbubbles (MBs) can be used as contrast agents of US expanding and contracting under low-amplitude US pressure waves. Ultrasound-stimulated microbubbles (USMBs) therapy is a promising option for the treatment of various cancers as a radiosensitizer. However, its role in esophageal squamous cell carcinoma (ESCC) remains unknown. In our study, human ESCC cell lines (KYSE-410, KYSE-1140) were treated with radiation solely, US alone, or radiation in combination with US or USMBs. The migration and invasion abilities of ESCC cells were examined by wound healing and Transwell assays. ESCC cell apoptosis was assessed using flow cytometry analysis and TUNEL assays. The levels of proteins associated with cell apoptosis and angiogenesis were measured by western blot analysis. A tube formation assay was performed to detect the ESCC cell angiogenesis. We found that USMBs at high levels most effectively most efficiently enhanced the effect of radiation, and significant changes in the viability (48%-51%), proliferation (1%), migration (63%-71%), invasion (52%) and cell apoptosis (31%-50%) of ESCC cells were observed compared with the control group in vitro. The ESCC angiogenesis was inhibited by US or radiation treatment and further inhibited by a combination of radiation and US or USMBs. USMBs at high levels most effectively enhanced the inhibitory effect of radiotherapy on ESCC cell apoptosis. Overall, USMBs enhanced the radiosensitivity of esophageal squamous cell carcinoma cells.Graphical abstractUSMBs treatment enhanced the anti-tumor effect of radiation on ESCC cell proliferation, migration, invasion, angiogenesis and apoptosis in vitro.1USMBs enhance the radiation-induced inhibition on ESCC cell growth2USMBs promote the radiation effect on ESCC cell apoptosis3USMBs enhance radiation-caused suppression on ESCC cell migration and invasion4USMBs enhance the suppression of radiation on ESCC angiogenesis[Figure: see text].


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Microburbujas , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Humanos , Fármacos Sensibilizantes a Radiaciones/química , Ondas Ultrasónicas
9.
J Agric Food Chem ; 69(11): 3390-3400, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33703896

RESUMEN

Land degraded by salinization and alkalization is widely distributed globally and involves a wide range of ecosystem types. However, the knowledge of the indigenous microbial assemblages and their roles in various saline-alkaline soils is limited. This study demonstrated microbial assemblages in various saline-alkaline soils from different regions of Inner Mongolia and revealed the key driving factors to influence microbiome. The correlation network analysis indicates the difference in adaptability of bacterial and fungal communities under stimulation by saline-alkaline stress: fungal community shows higher tolerance, stability, and resilience to various saline-alkaline soils than a bacterial community. The keystone bacteria and fungi that have potential adaptability to various saline-alkaline environments are further identified, and they may confer benefits in restoring saline-alkaline soils by their own effects or assisting plants. For salt-rich soils in different regions, the soluble salt ion components are the major determinant to drive microbial assemblages of different saline-alkaline soils, rather than salinity. Thus, these saline-alkaline soils are clustered into sulfated, chlorinated, and soda-type saline-alkaline soils. Multivariate analysis reveals unique, dominant, and common microbial taxa in three saline-alkaline soils. This result of the conceptual mode indicates that potential roles of unique and dominant microbial taxa on regulating saline-alkaline functions are more vital.


Asunto(s)
Microbiota , Suelo , China , Salinidad , Microbiología del Suelo
10.
Chemosphere ; 216: 9-18, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30359921

RESUMEN

The wide applications of graphene materials require the thorough investigation on their biosafety and environmental risks. Transformation of graphene materials is a fundamental issue in their environmental risk evaluations. The enzymatic degradation of graphene is widely reported using peroxidases, but the information on the fungal transformation of graphene is still unavailable. Herein, we incubated reduced graphene oxide (RGO) in the white rot fungus Phanerochaete chrysosporium culture system for 4 weeks and investigated the transformation of RGO by multiple techniques. P. chrysosporium efficiently added oxygen to RGO and decreased the its carbon contents accordingly. The ID/IG ratios of RGO showed statistically increases upon the transformation by P. chrysosporium according to Raman spectroscopy, suggesting the increase of defects on carbon skeleton. The negatively charged oxygen containing groups exfoliated the graphene sheets as indicated by the larger layer distance according to the X-ray diffraction spectra and the increased roughness under scanning electron microscopy. The transformation was more obvious in the RGO separated from the fungal balls than the precipitates in the culture medium. The mechanism of transformation was attributed to the enzymatic degradation by P. chrysosporium. The environmental implication of the fungal transformation of graphene materials and the potential of using fungi to reduce the environmental risks of graphene materials are discussed.


Asunto(s)
Grafito/metabolismo , Phanerochaete/metabolismo , Biodegradación Ambiental , Carbono/metabolismo , Medios de Cultivo/química , Proteínas Fúngicas/metabolismo , Óxidos/metabolismo , Peroxidasas/metabolismo , Phanerochaete/enzimología
11.
Ecotoxicol Environ Saf ; 162: 225-234, 2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-29990735

RESUMEN

Carbon nanotubes (CNTs) are widely used in diverse areas with increasing annual production, thus the environmental impact of CNTs needs thorough investigation. In this study, we evaluated the effect of pristine multi-walled CNTs (p-MWCNTs) and oxidized multi-walled CNTs (o-MWCNTs) on white rot fungus Phanerochaete chrysosporium, which is the decomposer in carbon cycle and also has many applications in environmental remediation. Both p-MWCNTs and o-MWCNTs had no influence on the dry weight increase of P. chrysosporium and the pH value of culture system. The fibrous structure of P. chrysosporium was disturbed by p-MWCNTs seriously, while o-MWCNTs had litter influence. The ultrastructural changes were more evident for P. chrysosporium exposed to p-MWCNTs and only p-MWCNTs could penetrate into the cell plasma. The chemical composition of P. chrysosporium was nearly unchanged according to the infrared spectra. The laccase activity was suppressed by p-MWCNTs, while o-MWCNTs showed stimulating effect. The decoloration of reactive brilliant red X-3B was not affected by both CNT samples. However, serious inhibition of wood degradation was observed in the p-MWCNTs exposed groups, suggesting the potential threat of CNTs to the decomposition of carbon cycle. The implication to the environmental risks and safe applications of carbon nanomaterials is discussed.


Asunto(s)
Contaminantes Ambientales/toxicidad , Nanotubos de Carbono/toxicidad , Phanerochaete/efectos de los fármacos , Concentración de Iones de Hidrógeno , Oxidación-Reducción/efectos de los fármacos , Phanerochaete/ultraestructura , Madera/metabolismo , Madera/microbiología
12.
Nanomaterials (Basel) ; 8(2)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29470407

RESUMEN

Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme activity, and decomposition capability of P. chrysosporium was investigated to reflect the potential toxicity of fullerene. C60 did not change the fresh and dry weights of P. chrysosporium but C60-COOH inhibited the weight gain at high concentrations. Both C60 and C60-COOH destroyed the fibrous structure of the mycelia. The ultrastructure of P. chrysosporium was changed by C60-COOH. Pristine C60 did not affect the enzyme activity of the P. chrysosporium culture system while C60-COOH completely blocked the enzyme activity. Consequently, in the liquid culture, P. chrysosporium lost the decomposition activity at high C60-COOH concentrations. The decreased capability in degrading wood was observed for P. chrysosporium exposed to C60-COOH. Our results collectively indicate that chemical functionalization enhanced the toxicity of fullerene to white rot fungi and induced the loss of decomposition activity. The environmental risks of fullerene and its disturbance to the carbon cycle are discussed.

13.
RSC Adv ; 8(9): 5026-5033, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35539547

RESUMEN

Graphene materials have attracted great interest nowadays due to their large-scale production and wide applications. It is urgent to evaluate the ecological and environmental risk of graphene materials for the healthy development of the graphene industry. Herein, we evaluated the influence of reduced graphene oxide (RGO) on the growth, structure and decomposition activity of white-rot fungus, whose decomposition function is vital for carbon cycle. RGO slightly stimulated the fresh weight and dry weight gains of Phanerochaete chrysosporium. A larger number of fibrous structures were observed at low RGO concentrations in P. chrysosporium, which was consistent with the elongation of cells observed under a transmission electron microscope. RGO did not affect the chemical composition of P. chrysosporium. Moreover, the laccase production of P. chrysosporium was not influenced by RGO. The degradation activities of P. chrysosporium for dye and wood appeared to be promoted slightly, but the differences were insignificant compared to the control. Therefore, RGO had low toxicity to white-rot fungus and was relatively safe for the carbon cycle.

14.
Artículo en Inglés | MEDLINE | ID: mdl-29072622

RESUMEN

Spongy graphene is a newly developed adsorbent of high performance for water treatment. Proper functionalization is an efficient approach to improve the adsorption capacity of graphene adsorbents. In this study, we prepared graphene oxide (GO), functionalized it with carboxyl groups to produce carboxylated GO (GO-COOH) dispersion, and lyophilized the GO-COOH dispersion to obtain the GO-COOH sponge. The adsorption isotherm, kinetics, thermodynamics, influencing factors, and regeneration of the adsorption of dye methylene blue (MB) on GO-COOH sponge were evaluated in batch experiments. The adsorption capacity of GO-COOH sponge was measured as 780 mg/g, which was nearly twice that of GO sponge (446 mg/g). The adsorption isotherm could be well described by the Freundlich model with a KF of 508 (L/mg)1/n. The adsorption kinetic was nicely fitted by pseudo-first-order model with a k1 of 0.00157·min-1. In thermodynamics analysis, the negative ΔG indicated the spontaneous nature of adsorption on GO-COOH sponge. The adsorption process was endothermic and was driven by the increase of entropy. Higher pH benefited the removal of MB by GO-COOH sponge and the ionic strength had no meaningful effect. The regeneration was poor due to the strong electrostatic interaction between MB and the GO-COOH sponge. The results collectively suggested that carboxylation increased the adsorption performance of GO sponge.


Asunto(s)
Colorantes/química , Grafito/química , Azul de Metileno/química , Óxidos/química , Contaminantes Químicos del Agua/química , Purificación del Agua/instrumentación , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Concentración Osmolar , Termodinámica , Purificación del Agua/métodos
15.
Colloids Surf B Biointerfaces ; 154: 96-103, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324692

RESUMEN

The dramatically different bio-effects of graphene and graphene oxide (GO) have been widely observed in diverse biological systems, which determine the applications and toxicity of graphene materials. To elucidate the mechanism at molecular level, it is urgent to investigate the enzyme-graphene interaction and its consequences. In this study, we comparatively studied the influence of GO and reduced GO (RGO) on the activity and conformation of lysozyme to provide better understandings of their different bio-effects. Both GO and RGO adsorbed large quantities of lysozyme after incubation. GO inhibited lysozyme activity seriously, while RGO nearly had no influence on the enzyme activity. The different inhibitions of enzyme activity could be explained by the lysozyme conformational changes, where GO induced more changes to the protein conformation according to UV-vis absorbance, far-UV circular dichroism spectra, intrinsic fluorescence quenching, and infrared spectra. Based on the spectroscopic changes of lysozyme, GO induced the loss of secondary structure and exposed the active site of lysozyme more to the aqueous environment. In addition, neither GO nor RGO induced the fibrillation of lysozyme after 12d incubation. The results collectively indicated that the oxidation degree significantly impacted the enzyme-graphene interaction. The implications to the designs of enzyme-graphene system for bio-related applications and the toxicological effects of graphene materials are discussed.


Asunto(s)
Grafito/química , Muramidasa/química , Muramidasa/metabolismo , Adsorción , Animales , Dicroismo Circular , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Oxidación-Reducción , Conformación Proteica , Espectrometría de Fluorescencia , Espectrofotometría Ultravioleta
16.
Mol Clin Oncol ; 6(1): 67-70, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28123731

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare disease of unknown cause, which encompasses a set of disorders of multiple organs with various clinical presentations that share the common characteristic of sizeable Langerhans cell infiltration. The clinical spectrum of LCH ranges from solitary bone lesions to involvement of other organs. lung involvement in LCH may be part of a multisystem disease, which almost exclusively occurs in adult smokers, while it is overlooked or misdiagnosed in the majority of non-smokers. High-resolution computed tomography (HRCT) of the chest is crucial for diagnosis; however, the treatment and prognosis of this disease have not been clearly determined. We herein present the case of a non-smoking adult patient who presented with lower limb pain and was diagnosed via biopsy with lch with multisystem involvement, including the bone and lungs. Lytic lesions in the corpus of the sacroiliac joint, sacrum, acetabulum and femoral head by a soft tissue mass were observed on diagnostic CT. In addition, chest HRCT revealed multiple cysts in the bilateral lungs, predominantly in the upper lobes. The final diagnosis of LCH was confirmed by histopathological examination and immunohistochemical staining for CD1a and S-100. Corticosteroid treatment alleviated lower limb pain and improved the patient's quality of life; thus, corticosteroids may be considered as a potential treatment option for patients with LCH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...