Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(4): e0071722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862956

RESUMEN

Several studies have suggested a role for gut mucosa-associated microbiota in the development of obesity, but the mechanisms involved are poorly defined. Here, the impact of the gut mucosa-associated microbiota on obesity and related metabolic disorders was evaluated in a metabolic syndrome (MetS) porcine model. Body composition was determined among male Wuzhishan minipigs consuming a high-energy diet (HED) and compared to that of those consuming a normal diet (ND), and gut segments (duodenum, jejunum, ileum, cecum, colon, and rectum) were sampled for paired analysis of mucosa-associated microbiota and transcriptome signatures with 16S rRNA gene and RNA sequencing, respectively. Our data indicated that long-term HED feeding significantly increased body weight and visceral fat deposition and aggravated metabolic disorders. Specially, HED feeding induced mucosa-associated microbiota dysbiosis and selectively increased the abundance of the families Enterobacteriaceae, Moraxellaceae, and Lachnospiraceae in the upper intestine. The association analysis indicated that specific bacteria play key roles in adiposity, e.g., Lactobacillus johnsonii in the duodenum, Actinobacillus indolicus in the jejunum, Acinetobacter johnsonii in the ileum, Clostridium butyricum in the cecum, Haemophilus parasuis in the colon, and bacterium NLAEzlP808, Halomonas taeheungii, and Shewanella sp. JNUH029 in the rectum. Transcriptome data further revealed intestinal lipid metabolism and immune dysfunction in the MetS individuals, which may be associated with obesity and related metabolic disorders. Our results indicated that gut mucosa-associated microbiota dysbiosis has the potential to exacerbate obesity, partially through modulating systemic inflammatory responses. IMPORTANCE Obesity is a major risk factor for metabolic syndrome, which is the most common cause of death worldwide, especially in developed countries. The link between obesity and gut mucosa-associated microbiota is unclear due to challenges associated with the collection of intestinal samples from humans. The current report provides the first insight into obesity-microbiome-gut immunity connections in a metabolic syndrome (MetS) porcine model. The present results show that dysbiosis of mucosal microbiota along the entire digestive tract play a critical role in the proinflammatory response in the host-microbial metabolism axis, resulting in obesity and related metabolic disorders in the MetS model.


Asunto(s)
Síndrome Metabólico , Microbiota , Animales , Bacterias/genética , Bacterias/metabolismo , Disbiosis/microbiología , Humanos , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Síndrome Metabólico/microbiología , Membrana Mucosa , Obesidad/microbiología , ARN Ribosómico 16S/genética , Porcinos , Porcinos Enanos/genética , Transcriptoma
2.
Front Nutr ; 9: 807118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35284467

RESUMEN

Background: The diet-induced gut microbiota dysbiosis has been suggested as a major risk factor for atherothrombosis, however, the detailed mechanism linking these conditions is yet to be fully understood. Methods: We established a long-term excessive-energy diet-induced metabolic syndrome (MetS) inbred Wuzhishan minipig model, which is characterized by its genetic stability, small size, and human-like physiology. The metabolic parameters, atherosclerotic lesions, gut microbiome, and host transcriptome were analyzed. Metabolomics profiling revealed a linkage between gut microbiota and atherothrombosis. Results: We showed that white atheromatous plaque was clearly visible on abdominal aorta in the MetS model. Furthermore, using metagenome and metatranscriptome sequencing, we discovered that the long-term excessive energy intake altered the local intestinal microbiota composition and transcriptional profile, which was most dramatically illustrated by the reduced abundance of SCFAs-producing bacteria including Bacteroides, Lachnospiraceae, and Ruminococcaceae in the MetS model. Liver and abdominal aorta transcriptomes in the MetS model indicate that the diet-induced gut microbiota dysbiosis activated host chronic inflammatory responses and significantly upregulated the expression of genes related to arachidonic acid-dependent signaling pathways. Notably, metabolomics profiling further revealed an intimate linkage between arachidonic acid metabolism and atherothrombosis in the host-gut microbial metabolism axis. Conclusions: These findings provide new insights into the relationship between atherothrombosis and regulation of gut microbiota via host metabolomes and will be of potential value for the treatment of cardiovascular diseases in MetS.

3.
Yi Chuan ; 42(5): 493-505, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32431300

RESUMEN

Xinjiang inbred cattle is a population which has been highly inbred for 45 years. However, the breed origin of this population cannot be traced back due to the lack of original records. To demonstrate the genetic background of Xinjiang inbred cattle, we analysed the worldwide genomic information of 16 cattle breeds using principal components analysis, and Admixture method. Furthermore, the shared SNP markers of Xinjiang inbred cattle, local Kazakh cattle, Holstein cattle, and Xinjiang Brown cattle were extracted to calculate population genetic parameters and genomic inbreeding indicators in order to evaluate the magnitude of inbreeding in each population. We also evaluated the relationship between inbreeding indicators and body size in the Xinjiang inbred population. Finally, the high frequency runs of homozygosity (ROH) regions for Xinjiang inbred cattle and local Kazakh population were selected for genes and QTL annotations. These results demonstrate that the ancestry proportions of inbreeding breed are similar to those of Kazakh cattle. The genomic homozygosity of Xinjiang inbred cattle is significantly higher than other populations; the inbreeding depression is observed in body size to a certain extent because body size decreased when corresponding homozygosity increased. Totally, six basic bio-pathways and 32 QTL regions that related to bovine economical traits were annotated. Our results provide the insights into breeding strategies, future protection, and utilization plan design for this special genetic material-Xinjiang inbred cattle.


Asunto(s)
Cruzamiento , Bovinos/genética , Homocigoto , Polimorfismo de Nucleótido Simple , Animales , Antecedentes Genéticos , Genómica , Endogamia
4.
Yi Chuan ; 31(4): 387-92, 2009 Apr.
Artículo en Chino | MEDLINE | ID: mdl-19586891

RESUMEN

In the present study, the DNA methylation patterns of in vitro-derived mouse tetraploid embryos were investigated by immunofluorescence staining with an antibody against 5-methylcytosine (5MeC). Tetraploid embryos could be produced by electrofusion at the stage of two-cell embryos, which could develop to blastocysts followed by fusion of cytoplasm and nucleus and cleavage in vitro. During the fusion of cytoplasm, the DNA methylation levels of the fused embryos are as high as these of two-cell diploid embryos in vivo Then the embryos are rapidly demethylated when the nucleus begin to fuse, resulting in the lowest DNA methylation levels when the nucleus are fused completely. After that, the DNA methylation levels of the fused embryos are gradually increased until the morula stage. However, whereas an asymmetric distribution of DNA methylation is established in vivo-derived blastocysts with a higher methylation level in the inner cell mass (ICM) than that in the trophectoderm, we can not detect the asymmetric distribution in most in vitro-derived tetraploid blastocysts. So the DNA methylation patterns of mouse tetraploid embryos are aberrant, which may lead to subsequent developmental failure and embryo death. This is the first report on the methylation patterns of in vitro-derived mouse tetraploid embryos.


Asunto(s)
Metilación de ADN/genética , Poliploidía , Animales , Diploidia , Embrión de Mamíferos , Femenino , Masculino , Ratones , Embarazo
5.
Sheng Wu Gong Cheng Xue Bao ; 22(4): 689-93, 2006 Jul.
Artículo en Chino | MEDLINE | ID: mdl-16894912

RESUMEN

The isolation and culturation of SSCs of different stage of Wuzhishan Mini Porcine (WZSP) with different way of enzymatic digestion and culturation were deaded in this study. The results of the experiment described are as the following: The proper time of isolation and culturation of SSCs of WZSP is 1-20 old days. Different old of piglets with different method. Using DMEM medium as a fundmental culture medium add different gradient at 34 degrees C in a water-saturated atmosphere of 95% air, 5% CO2. The mulberry-shaped SSCs clusters appeared as original generation in 7-8 days culture. The SSCs clusters developed half-suspendedly in the culture medium. SSCs alkaline phosphatase (AKP) staining expressed positively. Mouse embryonic fibroblast was used as feeder layer for the SSCs passage cultured, The SSCs show good attached attributes, but the number of SSCs decreased quickly after 4 days culture. By seminiferous cord fragment culturation can also appear SSCs clusters in 5 days, The SSCs clusters developed half-suspendedly in the culture medium. In addition, the testes placed in cold (4 degrees C) PBS banlanced salt solution for 24 h also can be used as a good matierials for preparation of SSCs. These results indicate that the method of solation and culturation of SSCs are very correct and efficient, all these can be utilized as a good reference for future studies.


Asunto(s)
Espermatogonias/citología , Células Madre/fisiología , Animales , Células Cultivadas , Masculino , Ratones , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...