Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 256: 153325, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33271443

RESUMEN

Although increasing intracellular proline under stressed condition could help the plants survive, treating plant with high level of proline under normal condition could be inhibitory to plant growth. Among other possible mechanisms, proline-induced mitochondrial reactive oxygen species (ROS) production due to electron overflow in mitochondria electron transport chain (mETC) caused by elevated proline degradation may contribute to the proline toxicity. However, direct evidences are still elusive. Here, we reported a functional characterization of SSR1, encoding a protein localized in mitochondria matrix, in maintaining the function of mETC through analyzing the proline hypersensitive phenotype of an Arabidopsis mutant ssr1-1 with a truncated SSR1 protein. Our analysis demonstrated that upon proline treatment, there were higher mitochondrial ROS, lower ATP content, reduced activity of mETC complex I and II, and reduced iron content in ssr1-1, in comparison to the wild type. Therefore, SSR1 is involved in maintaining normal capacity of mETC in transporting electrons in a way that related to iron homeostasis. Our results also supported that normal mETC activity is required for alleviating the proline toxicity.


Asunto(s)
Arabidopsis/genética , Arabidopsis/fisiología , Transporte de Electrón/genética , Homeostasis/genética , Hierro/metabolismo , Mitocondrias/metabolismo , Prolina/metabolismo , Transporte de Electrón/fisiología , Regulación de la Expresión Génica de las Plantas , Homeostasis/fisiología , Repeticiones de Microsatélite , Prolina/genética
2.
J Plant Physiol ; 251: 153217, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32574916

RESUMEN

F-box protein, one of the building blocks of the SCF complex, functions in substrate recognition of the SCF subtype of E3 ubiquitin ligase. However, the role of F-box protein in salt stress is largely elusive in plants. Here, we report the characterization of an Arabidopsis salt-tolerant mutant est1 with significantly reduced sodium content and higher Na+/H+ antiporter activity after NaCl treatment compared to the wild-type. Over-expression of EST1 resulted in increased sensitivity to salt stress, suggesting that EST1 may act as a negative regulator for salt tolerance in Arabidopsis. EST1 encodes an F-box protein, which interacts with ASK4, ASK14, and ASK18, and is likely targeted to the endoplasmic reticulum. In addition, EST1 interacts with MKK4 and negatively regulates MKK4 protein levels and the activity of the plasma membrane Na+/H+ antiporter. Our findings demonstrate the existence of an EST1-MKK4 module that mediates salt sensitivity by regulating the activity of the plasma membrane Na+/H+ antiporter. These results provide important information for engineering salt-tolerant crops.


Asunto(s)
Arabidopsis/fisiología , Proteínas F-Box/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Intercambiadores de Sodio-Hidrógeno/genética , Arabidopsis/genética , Membrana Celular , Proteínas F-Box/metabolismo , Transporte Iónico , Proteínas de Plantas/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo
3.
Plant Biotechnol J ; 17(7): 1446-1457, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30623555

RESUMEN

In Arabidopsis, the initiation and proliferation of stomatal lineage cells is controlled by SPEECHLESS (SPCH). Phosphorylation of SPCH at the post-translational level has been reported to regulate stomatal development. Here we report that IDD16 acts as a negative regulator for stomatal initiation by directly regulating SPCH transcription. In Arabidopsis, IDD16 overexpression decreased abaxial stomatal density in a dose-dependent manner. Time course analysis revealed that the initiation of stomatal precursor cells in the IDD16-OE plants was severely inhibited. Consistent with these findings, the transcription of SPCH was greatly repressed in the IDD16-OE plants. In contrast, IDD16-RNAi transgenic line resulted in enhanced stomatal density, suggesting that IDD16 is an intrinsic regulator of stomatal development. ChIP analysis indicated that IDD16 could directly bind to the SPCH promoter. Furthermore, Arabidopsis plants overexpressing IDD16 exhibited significantly increased drought tolerance and higher integrated water use efficiency (WUE) due to reduction in leaf transpiration. Collectively, our results established that IDD16 negatively regulates stomatal initiation via trans-repression of SPCH, and thus provide a practical tool for increasing plant WUE through the manipulation of IDD16 expression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Arabidopsis/fisiología , Sequías
4.
Proc Natl Acad Sci U S A ; 113(51): E8335-E8343, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27930298

RESUMEN

To cope with environmental stresses, plants often adopt a memory response upon primary stress exposure to facilitate a quicker and stronger reaction to recurring stresses. However, it remains unknown whether light is involved in the manifestation of stress memory. Proline accumulation is a striking metabolic adaptation of higher plants during various environmental stresses. Here we show that salinity-induced proline accumulation is memorable and HY5-dependent light signaling is required for such a memory response. Primary salt stress induced the expression of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1), encoding a proline biosynthetic enzyme and proline accumulation, which were reduced to basal level during the recovery stage. Reoccurring salt stress-induced stronger P5CS1 expression and proline accumulation were dependent upon light exposure during the recovery stage. Further studies demonstrated that salt-induced transcriptional memory of P5CS1 is associated with the retention of increased H3K4me3 level at P5CS1 during the recovery stage. HY5 binds directly to light-responsive element, C/A-box, in the P5CS1 promoter. Deletion of the C/A-box or hy5 hyh mutations caused rapid reduction of H3K4me3 level at P5CS1 during the recovery stage, resulting in impairment of the stress memory response. These results unveil a previously unrecognized mechanism whereby light regulates salt-induced transcriptional memory via the function of HY5 in maintaining H3K4me3 level at the memory gene.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glutamato-5-Semialdehído Deshidrogenasa/metabolismo , Luz , Complejos Multienzimáticos/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sales (Química)/química , Estrés Fisiológico , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Regulación de la Expresión Génica de las Plantas , Glutamato-5-Semialdehído Deshidrogenasa/genética , Histonas/metabolismo , Complejos Multienzimáticos/genética , Mutación , Proteínas Nucleares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/efectos de la radiación , Pirroles , Semillas/metabolismo , Transducción de Señal , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...