Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(3): 116293, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38598951

RESUMEN

Data on people suspected with acute respiratory infections (ARIs) from August 2022 to December 2023 in southern China were analyzed. Following the COVID-19 pandemic, the positive detection rates of respiratory pathogens increased to 56.9%. Influenza A virus (IAV) emerged as the predominant prevalence pathogen (52.1%), followed by Mycoplasma pneumoniae (Mp: 21.2%), and SARS-CoV-2 (11.6%). Mp, IAV, and Human rhinovirus (HRV) infection were the primary etiologies of ARIs patients under age 18, accounting for 49.4%, 48.6%, and 21.7%, respectively. Mp, HRV, Respiratory syncytial virus (RSV), and Adenovirus (ADV) contributed to ARIs cases in virtually every month in this group, with Mp being particularly notable for its consistent presence and high co-infection rate (31.0%). IAV was predominant in the 19 to 59 age group (88.6%), SARS-CoV-2 was responsible for most of ARIs in the elderly group (82.5%). This study provides valuable insights into the dynamic nature of respiratory pathogens post COVID-19 era.

2.
Heliyon ; 10(5): e26853, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38439876

RESUMEN

Background: Cisplatin (DDP) is the principal agent used for chemotherapy in patients with non-small cell lung cancer (NSCLC). Nevertheless, DDP resistance is an essential cause for a worse prognosis of patient. Therefore, this study proposes to discover features of miR-424-5p in DDP resistance of NSCLC. Method: After exogenous modulation of miR-424-5p expression, A549 cell activity was measured using CCK-8 and flow cytometry. A549/DDP and A549/DDP-associated subcutaneous tumor model were constructed to investigate the effect of miR-424-5p on DDP resistance in NSCLC in vivo. TargetScan and JASPAR databases predicted the potential molecular mechanism of miR-424-5p. A549-and A549/DDP-derived exosomes were isolated and characterized using a transmission electron microscope and nanoparticle tracking analysis. Result: Overexpression of miR-424-5p facilitated proliferation and DDP resistance in A549 cells, and knockdown of miR-424-5p did the opposite. Knockdown of miR-424-5p enhanced DDP restriction on tumor weight and volume. Moreover, SOCS5 and SOCS56 (SOCS5/6) were downstream targets of miR-424-5p. miR-424-5p down-regulated SOCS5/6 expression to activate JAK2/STAT3 and PI3K/AKT pathways. Notably, tumor protein p53 (TP53) is a transcription factor for the miR-424-5p host gene, as confirmed by the dual-luciferase reporter gene. Cellular and animal experiments indicated that TP53 limited the regulatory function of miR-424-5p on NSCLC growth, DDP resistance, and related molecules. Interestingly, miR-424-5p was markedly enriched in A549/DDP cell-derived exosomes than in A549 cell-derived exosomes, and TP53 down-regulated miR-424-5p expression in A549/DDP cell-derived exosomes. Conclusion: DDP-resistant cell-derived exosome miR-424-5p contributes to NSCLC growth and DDP resistance by targeting SOCS5 and SOCS6 to activate JAK2/STAT3 and PI3K/AKT pathways, which are blocked by TP53.

3.
Mol Ther ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38549376

RESUMEN

Malignant tumors are often associated with an immunosuppressive tumor microenvironment (TME), rendering most of them resistant to standard-of-care immune checkpoint inhibitors (CPIs). Signal transducer and activator of transcription 3 (STAT3), a ubiquitously expressed transcription factor, has well-defined immunosuppressive functions in several leukocyte populations within the TME. Since the STAT3 protein has been challenging to target using conventional pharmaceutical modalities, we investigated the feasibility of applying systemically delivered RNA interference (RNAi) agents to silence its mRNA directly in tumor-associated immune cells. In preclinical rodent tumor models, chemically stabilized acylated small interfering RNAs (siRNAs) selectively silenced Stat3 mRNA in multiple relevant cell types, reduced STAT3 protein levels, and increased cytotoxic T cell infiltration. In a murine model of CPI-resistant pancreatic cancer, RNAi-mediated Stat3 silencing resulted in tumor growth inhibition, which was further enhanced in combination with CPIs. To further exemplify the utility of RNAi for cancer immunotherapy, this technology was used to silence Cd274, the gene encoding the immune checkpoint protein programmed death-ligand 1 (PD-L1). Interestingly, silencing of Cd274 was effective in tumor models that are resistant to PD-L1 antibody therapy. These data represent the first demonstration of systemic delivery of RNAi agents to the TME and suggest applying this technology for immuno-oncology applications.

5.
Hepatology ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546278

RESUMEN

BACKGROUND AND AIMS: The immunomodulatory characteristics of mesenchymal stem cells (MSCs) make them a promising therapeutic approach for liver fibrosis (LF). Here, we postulated that MSCs could potentially suppress the pro-fibrotic activity of intrahepatic B cells, thereby inhibiting LF progression. APPROACH AND RESULTS: Administration of MSCs significantly ameliorated LF as indicated by reduced myofibroblast activation, collagen deposition, and inflammation. The treatment efficacy of MSCs can be attributed to decreased infiltration, activation, and pro-inflammatory cytokine production of intrahepatic B cells. Single-cell RNA sequencing revealed a distinct intrahepatic B cell atlas, and a subtype of naive B cells (B-II) was identified, which were markedly abundant in fibrotic liver, displaying mature features with elevated expression of several proliferative and inflammatory genes. Transcriptional profiling of total B cells revealed that intrahepatic B cells displayed activation, proliferation, and pro-inflammatory gene profile during LF. Fibrosis was attenuated in mice ablated with B cells (µMT) or in vivo treatment with anti-CD20. Moreover, fibrosis was recapitulated in µMT after adoptive transfer of B cells, which in turn could be rescued by MSC injection, validating the pathogenic function of B cells and the efficacy of MSCs on B cell-promoted LF progression. Mechanistically, MSCs could inhibit the proliferation and cytokine production of intrahepatic B cells through exosomes, regulating the Mitogen-activated protein kinase and Nuclear factor kappa B signaling pathways. CONCLUSIONS: Intrahepatic B cells serve as a target of MSCs, play an important role in the process of MSC-induced amelioration of LF, and may provide new clues for revealing the novel mechanisms of MSC action.

6.
Brain ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366606

RESUMEN

Chronic varicella zoster virus (VZV) infection induced neuroinflammatory condition is the critical pathology of postherpetic neuralgia (PHN). The immune escape mechanism of VZV remains to be elusive. Due to mice have no VZV infection receptor, herpes simplex virus type 1 (HSV-1) infection is a well-established PHN mice model. Transcriptional expression analysis identified that the protein arginine methyltransferases 6 (Prmt6) was upregulated upon HSV-1 infection, which was further confirmed by immunofluorescence staining in spinal dorsal horn. Prmt6 deficiency decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load in vivo and in vitro. Overexpression of Prmt6 in microglia dampened antiviral innate immunity and increased HSV-1 load. Mechanistically, Prmt6 methylated and inactivated STING, resulting in reduced phosphorylation of TANK binding kinase-1 (TBK1) and interferon regulatory factor 3 (IRF3), diminished production of type I interferon (IFN-I) and antiviral innate immunity. Furthermore, intrathecal or intraperitoneal administration of the Prmt6 inhibitor EPZ020411 decreased HSV-1-induced neuroinflammation and PHN by enhancing antiviral innate immunity and decreasing HSV-1 load. Our findings revealed that HSV-1 escapes antiviral innate immunity and results in PHN by upregulating Prmt6 expression and inhibiting cGAS-STING pathway, providing novel insights and a potential therapeutic target for PHN.

7.
Asian J Pharm Sci ; 19(1): 100889, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38419761

RESUMEN

Primary sclerosing cholangitis (PSC) is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis, with no curative treatment available, and liver transplantation is inevitable for end-stage patients. Human placental mesenchymal stem cell (hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis, inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease. Here, we prepared hpMSC-derived exosomes (ExoMSC) and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2-/- mice and multicellular organoids established from PSC patients. The results showed that ExoMSC ameliorated liver fibrosis in Mdr2-/- mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis, and the percentage of CD4+IL-17A+T cells was reduced both in ExoMSC-treated Mdr2-/- mice (Mdr2-/--Exo) in vivo and ExoMSC-treated Th17 differentiation progressed in vitro. Furthermore, ExoMSC improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids. Thus, our data demonstrate the anti-fibrosis effect of ExoMSC in PSC disease by inhibiting Th17 differentiation, and ameliorating the Th17-induced microenvironment, indicating the promising potential therapeutic role of ExoMSC in liver fibrosis of PSC or Th17-related diseases.

8.
Int Immunopharmacol ; 128: 111474, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38185036

RESUMEN

Hepatic ischemia-reperfusion injury (IRI) typically manifests during subtotal hepatectomy and inflicts substantial damage to liver function in the perioperative period. Although the central role of cGAS-STING-mediated immune inflammation in hepatocyte damage during hepatic IRI is acknowledged, the precise regulatory mechanisms remain elusive. The current study aims to elucidate how Sirt3 inhibition activates the cGAS-STING pathway and exacerbates hepatocyte damage in hepatic IRI. We established both in vivo and in vitro models by creating hepatic IRI mice model and subjecting AML-12 hepatocyte cell lines to oxygen-glucose deprivation/reperfusion (OGD/R). Hepatic IRI compromised liver and mitochondrial function while elevating cytosolic mitochondrial DNA (mtDNA) levels in hepatocytes. Additionally, both in vivo hepatic IRI and in vitro OGD/R induced increased phosphorylation and activation of cGAS, STING, and IRF3, accompanied by heightened levels of pro-inflammatory factors, including TNF-α, IL-1ß, and type I interferon (IFN-ß). Importantly, knockdown of cGAS or STING through siRNA effectively attenuated hepatic IRI-induced inflammation and ameliorated liver function in both experimental settings, underscoring the dynamic involvement of the cGAS-STING pathway in hepatic IRI-induced inflammation. Furthermore, we observed a significant reduction in Sirt3 expression following hepatic IRI, both in vivo and in vitro. Then we generated Sirt3-deficient mice and applied Sirt3 knockdown in AML-12 hepatocytes. Notably, Sirt3 deficiency led to increased phosphorylation and activation of cGAS, STING, and IRF3, coupled with elevated TNF-α, IL-1ß, and IFN-ß levels in both in vivo and in vitro conditions. Moreover, upon silencing various downstream targets of Sirt3, such as transcription factors Sp1, Pu1, and p65, we observed that specifically knocking down p65 in AML-12 hepatocytes reduced cGAS mRNA levels. Co-immunoprecipitation assays confirmed a direct interaction between Sirt3 and p65. The absence of Sirt3 significantly increased nuclear translocation of p65 in mice, whereas Sirt3 knockdown in AML-12 hepatocytes heightened nuclear translocation of p65. ChIP-PCR assays demonstrated that Sirt3 deficiency notably enhanced the binding of p65 to two cGAS promoters, ultimately promoting cGAS transcription. Collectively, our results underscored that inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage by increasing cytosolic mtDNA and promoting nuclear translocation of p65 to promote cGAS transcription in hepatic IRI. These findings hold promise for potential therapeutic interventions in hepatic IRI by targeting the Sirt3-cGAS-STING axis, offering new avenues for the development of clinical strategies to mitigate liver damage during the perioperative period.


Asunto(s)
Leucemia Mieloide Aguda , Hepatopatías , Daño por Reperfusión , Sirtuina 3 , Ratones , Animales , Sirtuina 3/metabolismo , Factor de Necrosis Tumoral alfa , Transducción de Señal , Nucleotidiltransferasas/metabolismo , Hepatocitos/metabolismo , Inflamación/metabolismo , ADN Mitocondrial , Daño por Reperfusión/metabolismo
9.
J Cell Mol Med ; 28(3): e18090, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38140846

RESUMEN

Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1ß, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Desmielinizantes , Exosomas , MicroARNs , Fracturas de la Tibia , Animales , Ratones , Antiinflamatorios/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Ciclina D1/metabolismo , Enfermedades Desmielinizantes/metabolismo , Exosomas/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , MicroARNs/genética , Derivados de la Morfina/metabolismo , Dolor Postoperatorio/metabolismo , Fracturas de la Tibia/metabolismo , Envejecimiento
10.
Metab Eng ; 80: 207-215, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852432

RESUMEN

Icariin (ICA) has wide applications in nutraceuticals and medicine with strong anticancer activities. However, the structural complexity and low abundance in plants of ICA lead to the unsustainable and high-cost supply from chemical synthesis and plant extraction. Here, the whole biosynthesis pathway of ICA was elucidated, then was constructed in Saccharomyces cerevisiae, including a 13-step heterologous ICA pathway from eleven kinds of plants as well as deletions or overexpression of ten yeast endogenous genes. Spatial regulation of 8-C-prenyltransferase to mitochondria and three-stage sequential control of 4'-O-methyltransferase, 3-OH rhamnosyltransferase, and 7-OH glycosyltransferase expression successfully achieved the de novo synthesis of ICA with a titer of 130 µg/L under shake-flask culture. The ICA synthesis from glucose represents the longest reconstructed pathway of flavonoid in microbe so far. This study provides a potential choice for the sustainable microbial production of number of complex flavonoids.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Flavonoides/genética , Glucosa/metabolismo
11.
Stem Cell Res Ther ; 14(1): 197, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553691

RESUMEN

BACKGROUND: Mesenchymal stem cell (MSC) treatment plays a major role in the management of acute lung injury (ALI), and neutrophils are the initial line of defense against ALI. However, the effect of MSCs on neutrophils in ALI remains mostly unknown. METHODS: We investigated the characteristics of neutrophils in lung tissue of ALI mice induced by lipopolysaccharide after treatment with MSCs using single-cell RNA sequencing. Neutrophils separated from lung tissue in ALI were co-cultured with MSCs, and then samples were collected for reverse transcription-polymerase chain reaction and flow cytometry. RESULTS: During inflammation, six clusters of neutrophils were identified, annotated as activated, aged, and circulatory neutrophils. Activated neutrophils had higher chemotaxis, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase scores than aged neutrophils. Circulatory neutrophils occurred mainly in healthy tissue and were characterized by higher expression of Cxcr2 and Sell. Activated neutrophils tended to exhibit higher expression of Cxcl10 and Cd47, and lower expression of Cd24a, while aged neutrophils expressed a lower level of Cd47 and higher level of Cd24a. MSC treatment shifted activated neutrophils toward an aged neutrophil phenotype by upregulating the expression of CD24, thereby inhibiting inflammation by reducing chemotaxis, ROS production, and NADPH oxidase. CONCLUSION: We identified the immunosuppressive effects of MSCs on the subtype distribution of neutrophils and provided new insight into the therapeutic mechanism of MSC treatment in ALI.


Asunto(s)
Lesión Pulmonar Aguda , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Ratones , Animales , Neutrófilos/metabolismo , Antígeno CD47/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/metabolismo , Lipopolisacáridos/toxicidad , Inflamación/terapia , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo
12.
ACS Synth Biol ; 12(9): 2715-2724, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37651305

RESUMEN

Efficient and cost-effective conversion of CO2 to biomass holds the potential to address the climate crisis. Light-driven CO2 conversion can be realized by combining inorganic semiconductors with enzymes or cells. However, designing enzyme cascades for converting CO2 to multicarbon compounds is challenging, and inorganic semiconductors often possess cytotoxicity. Therefore, there is a critical need for a straightforward semiconductor biohybrid system for CO2 conversion. Here, we used a visible-light-responsive and biocompatible C3N4 porous nanosheet, decorated with formate dehydrogenase, formaldehyde dehydrogenase, and alcohol dehydrogenase to establish an enzyme-photocoupled catalytic system, which showed a remarkable CO2-to-methanol conversion efficiency with an apparent quantum efficiency of 2.48% in the absence of externally added electron mediator. To further enable the in situ transformation of methanol into biomass, the enzymes were displayed on the surface of Komagataella phaffii, which was further coupled with C3N4 to create an organic semiconductor-enzyme-cell hybrid system. Methanol was produced through enzyme-photocoupled CO2 reduction, achieving a rate of 4.07 mg/(L·h), comparable with reported rates from photocatalytic systems employing mediators or photoelectrochemical cells. The produced methanol can subsequently be transported into the cell and converted into biomass. This work presents a sustainable, environmentally friendly, and cost-effective enzyme-photocoupled biocatalytic system for efficient solar-driven conversion of CO2 within a microbial cell.


Asunto(s)
Dióxido de Carbono , Metanol , Alcohol Deshidrogenasa/genética , Biocatálisis , Transporte Biológico
13.
Sheng Wu Gong Cheng Xue Bao ; 39(6): 2141-2157, 2023 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-37401587

RESUMEN

Proteins play a variety of functional roles in cellular activities and are indispensable for life. Understanding the functions of proteins is crucial in many fields such as medicine and drug development. In addition, the application of enzymes in green synthesis has been of great interest, but the high cost of obtaining specific functional enzymes as well as the variety of enzyme types and functions hamper their application. At present, the specific functions of proteins are mainly determined through tedious and time-consuming experimental characterization. With the rapid development of bioinformatics and sequencing technologies, the number of protein sequences that have been sequenced is much larger than those can be annotated, thus developing efficient methods for predicting protein functions becomes crucial. With the rapid development of computer technology, data-driven machine learning methods have become a promising solution to these challenges. This review provides an overview of protein function and its annotation methods as well as the development history and operation process of machine learning. In combination with the application of machine learning in the field of enzyme function prediction, we present an outlook on the future direction of efficient artificial intelligence-assisted protein function research.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Proteínas/genética , Biología Computacional/métodos , Desarrollo de Medicamentos
14.
Pharmacol Res ; 194: 106851, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453673

RESUMEN

Hypoxia-inducible factor-2α (HIF-2α) is a transcription factor responsible for regulating genes related to angiogenesis and metabolism. This study aims to explore the effect of a previously unreported mutation c.C2473T (p.R825S) in the C-terminal transactivation domain (CTAD) of HIF-2α that we detected in tissue of patients with liver disease. We sequenced available liver and matched blood samples obtained during partial liver resection or liver transplantation performed for clinical indications including hepatocellular carcinoma and liver failure. In tandem, we constructed cell lines and a transgenic mouse model bearing the corresponding identified mutation in HIF-2α from which we extracted primary hepatocytes. Lipid accumulation was evaluated in these cells and liver tissue from the mouse model using Oil Red O staining and biochemical measurements. We identified a mutation in the CTAD of HIF-2α (c.C2473T; p.R825S) in 5 of 356 liver samples obtained from patients with hepatopathy and dyslipidemia. We found that introduction of this mutation into the mouse model led to an elevated triglyceride level, lipid droplet accumulation in liver of the mutant mice and in their extracted primary hepatocytes, and increased transcription of genes related to hepatic fatty acid transport and synthesis in the mutant compared to the control groups. In mutant mice and cells, the protein levels of nuclear HIF-2α and its target perilipin-2 (PLIN2), a lipid droplet-related gene, were also elevated. Decreased lipophagy was observed in mutant groups. Our study defines a subpopulation of dyslipidemia that is caused by this HIF-2α mutation. This may have implications for personalized treatment.


Asunto(s)
Dislipidemias , Neoplasias Hepáticas , Animales , Humanos , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Dislipidemias/genética , Lípidos , Mutación
15.
ACS Synth Biol ; 12(8): 2463-2474, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37473419

RESUMEN

Glycosylation is an important method of modifying natural products and is usually catalyzed by uridine 5'-diphosphate (UDP)-glycosyltransferase. UDP-ß-l-arabinose (UDP-Ara) confers specific functions to natural products such as pentacyclic triterpenoids. However, UDP-arabinosyltransferase with high regioselectivity toward pentacyclic triterpenoids has rarely been reported. In addition, UDP-Ara is mainly biosynthesized from UDP-α-d-glucose (UDP-Glc) through several reaction steps, resulting in the high cost of UDP-Ara. Herein, UGT99D1 was systematically characterized for specifically transferring one moiety of arabinose to the C-3 position of typical pentacyclic triterpenoids. Subsequently, 15 enzymes from plants, mammals, and microorganisms were characterized, and a four-enzyme cascade comprising sucrose synthase, UDP-Glc dehydrogenase, UDP-α-d-glucuronic acid decarboxylase, and UDP-Glc 4-epimerase was constructed to transform sucrose into UDP-Ara with UDP recycling. This system was demonstrated to efficiently produce the arabinosylated derivative (Ara-BA) of typical pentacyclic triterpenoid betulinic acid (BA). Finally, the in vitro cytotoxicity tests indicated that Ara-BA showed much higher anticancer activities than BA. The established arabinosylation platform shows the potential to enhance the pharmacological activity of natural products.


Asunto(s)
Arabinosa , Uridina Difosfato , Animales , Triterpenos Pentacíclicos/farmacología , Plantas , Glucosa , Mamíferos
16.
Int Immunopharmacol ; 122: 110637, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37473713

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) usually occurs during subtotal hepatectomy and severely damages liver function during the perioperative period. Endoplasmic reticulum stress (ERS) dependent apoptosis has been suggested to play a crucial role in HIRI progression. The present study focused on the regulatory effect of autophagy activation induced by ischemic preconditioning (IPC) on ERS-dependent apoptosis of hepatocytes in HIRI. A HIRI mouse model and oxygen-glucose deprivation/reperfusion (OGD/R) AML-12 hepatocyte cell lines were constructed to evaluate the protective effect of IPC in vivo and in vitro. The protein levels of p-eIF2α, CHOP, and cleaved caspase-12 were used to evaluate the ERS-dependent apoptosis, whereas LC3-II and p62 were considered as the autophagy activation markers. The beneficial molecular chaperones GRP78, HSP60, and HSP70 were also tested to evaluate autophagy. HIRI significantly increased ERS-dependent apoptosis markers and the number of apoptotic cells and damaged liver function. The ERS inhibitor salubrinal significantly alleviated liver injury in HIRI and OGD/R hepatocytes. Furthermore, both remote IPC and direct IPC significantly alleviated liver injury and inflammatory cell infiltration. IPC also upregulated LC3-II, downregulated p62 expression, and increased the mRNA levels of GRP78, HSP60, and HSP70 in HIRI mice and OGD/R hepatocytes, indicating the activation of autophagy by IPC. The autophagy inhibitor 3-methyladenine significantly attenuated the protective effects of IPC on ERS-dependent apoptosis and liver function, whereas the autophagy activator rapamycin mimicked the protective effects of IPC on ERS-dependent apoptosis in vivo and in vitro, suggesting a regulatory role of autophagy in ERS-dependent apoptosis. These results demonstrated that IPC could induce moderate autophagy and upregulate a few molecular chaperones to strengthen endogenous defense mechanisms, which is beneficial for alleviating ERS-dependent apoptosis and protecting hepatocytes from HIRI.


Asunto(s)
Precondicionamiento Isquémico , Daño por Reperfusión , Ratones , Animales , Chaperón BiP del Retículo Endoplásmico , Precondicionamiento Isquémico/métodos , Apoptosis , Autofagia , Hígado/metabolismo , Hepatocitos/metabolismo , Daño por Reperfusión/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Oxígeno/metabolismo , Estrés del Retículo Endoplásmico
17.
J Agric Food Chem ; 71(24): 9441-9450, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37289015

RESUMEN

UDP-glucosyltransferase can be coupled with sucrose synthase to construct a two-enzyme UDP (UDP-2E) recycling system for glucosylation of natural products with inexpensive sucrose as the consumed substrate. However, sucrose hydrolysis leads to the accumulation of fructose as a byproduct, which decreases the atom economy of sucrose and suppresses in situ UDP recycling. In this study, a polyphosphate-dependent glucokinase was demonstrated to convert fructose to fructose-6-phosphate independent of expensive ATP for the first time. Then the glucokinase was introduced into the UDP-2E recycling system to construct a modified three-enzyme UDP (UDP-3E) recycling system, which showed enhanced glucosylation efficiency of triterpenoids by fructose phosphorylation to accelerate sucrose hydrolysis and UDP recycling. Finally, by further introducing a phosphofructokinase into the UDP-3E recycling system, we transformed fructose-6-phosphate into fructose-1,6-diphosphate, demonstrating that the UDP-3E recycling system can be coupled with extra enzymes to obtain final products with high added-value without compromising the glycosylation efficiency.


Asunto(s)
Productos Biológicos , Fructosa , Glicosilación , Fosforilación , Glucoquinasa , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Sacarosa , Uridina Difosfato/metabolismo
18.
Front Microbiol ; 14: 1159912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007508

RESUMEN

Klebsiella pneumoniae is one of the leading pathogens contributing to antimicrobial resistance. The emergence of carbapenem-resistant K. pneumoniae (CRKP) has put the use of clinical antimicrobial agents in a dilemma. In particular, CRKP exhibiting resistance to ceftazidime/avibactam, tigecycline and colistin have raised great clinical concern, as these are the last-resort antibiotics for the treatment of CRKP infections. Within-host evolution is a survival strategy closely related to the emergence of antimicrobial resistance, while little attention has been paid to the in vivo genetic process of conversion from antibiotic-susceptible to resistant K. pneumoniae. Here we have a literature review regarding the in vivo evolution of resistance to carbapenems, ceftazidime/avibactam, tigecycline, and colistin in K. pneumoniae during antibacterial therapy, and summarized the detailed resistance mechanisms. In general, acquiring bla KPC and bla NDM harboring-plasmid, specific mutations in bla KPC, and porin genes, such as ompK35 and ompK36, upregulation of bla KPC, contribute to the development of carbapenem and ceftazidime/avibactam resistance in vivo. Overexpression of efflux pumps, acquiring plasmid-carrying tet (A) variants, and ribosomal protein change can lead to the adaptive evolution of tigecycline resistance. Specific mutations in chromosomes result in the cationic substitution of the phosphate groups of lipid A, thus contributing to colistin resistance. The resistant plasmid might be acquired from the co-infecting or co-colonizing strains, and the internal environment and antibiotic selection pressure contribute to the emergence of resistant mutants. The internal environment within the human host could serve as an important source of resistant K. pneumoniae strains.

19.
ACS Synth Biol ; 12(2): 460-470, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36649530

RESUMEN

Yeast surface display is an appealing technique for constructing multienzyme cascades. This technique is commonly achieved using a scaffold for the ordered arrangement of various enzymes. However, this method is typically complicated because scaffold use may engender extra metabolic burden on the cell host. Here, we established a direct yeast surface codisplay strategy by employing two complementary anchor motifs, Agα1 and Pir1. These motifs allow for the codisplay of sequential uridine diphosphate-glycosyltransferase (UGT) and sucrose synthase (SUS) on the surface of Pichia pastoris (syn. Komagataella phaffii) for the glycosylation of natural products. We manipulated the displayed stoichiometry, amount, and assembly order of UGT and SUS by coupling them with anchor motifs. Furthermore, their effect on enzyme activity was thoroughly investigated. The surface-codisplayed strain UGT-Pir-SUS-Agα exhibited greater thermostability than the single-displayed strains and their free counterparts. Moreover, the strain UGT-Pir-SUS-Agα was successfully applied to glycyrrhetinic acid (GA) glycosylation to produce GA-3-O-Glc, with sucrose being the sugar donor in this process. This generated 7.5- to 20- and 5.3-fold higher GA-3-O-Glc concentration compared with the free counterparts (enzyme mass loading of 20-fold in excess) and mixed single-displayed strains of UGT-Agα and SUS-Pir, respectively. This increase was due to the improved biochemical properties and substrate channeling effect of strain UGT-Pir-SUS-Agα. This controllable direct surface codisplay strategy, based on complementary anchor motifs, is readily extendable to other enzyme cascades.


Asunto(s)
Productos Biológicos , Glicosilación , Productos Biológicos/metabolismo , Glicosiltransferasas/metabolismo , Pichia/genética , Pichia/metabolismo
20.
Biomed Res Int ; 2023: 2763320, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647546

RESUMEN

Objective: Ischemia reperfusion injury greatly damages liver function and deteriorates the prognosis of patients undergoing partial hepatectomy. This study is to compare the protective efficiency of direct and remote ischemic preconditioning (DIPC and RIPC) on ischemia reperfusion injury of the liver in patients undergoing partial hepatectomy. Methods: 90 patients scheduled for partial hepatectomy were enrolled and randomly divided into control (n = 30), DIPC (n = 30), and RIPC (n = 30) groups. Baseline and surgery characteristics were collected, and ischemic preconditioning methods were carried out. Intraoperative hemodynamics, liver function and liver reserve capacity, oxidative stress, and inflammatory responses were measured, and the incidence of postoperative adverse reactions was calculated finally. Results: 10 patients were excluded from the study, and finally, the eligible patients in three groups were 27, 28, and 25, separately. No significant differences were observed in baseline and surgery characteristics among the three groups. SBP and DBP were significantly higher after hepatic portal vein occlusion while they were significantly lower after surgery in the DIPC and RIPC groups compared with that in the control group, SBP and DBP were of great fluctuation at different time points in the control group while they showed much more stabilization in the DIPC and RIPC groups. ALT, AST, and TBIL were significantly decreased on days 1, 3, and 5 after surgery, and ICG R15 was significantly decreased while ICG K value and EHBF were significantly increased on day 1 after surgery in the DIPC and RIPC groups compared with that in the control group. Moreover, antioxidant enzyme SOD was increased, and inflammatory factors TNF-α and IL-1ß were decreased 24 hours after surgery in the DIPC and RIPC groups compared with that in the control group. DIPC and RIPC also decreased hospital stays and the incidence of nausea, vomiting, and hypertension. Conclusion: DIPC and RIPC both alleviated ischemia reperfusion injury of the liver and reduced perioperative complications with similar protective efficiency in patients undergoing partial hepatectomy.


Asunto(s)
Precondicionamiento Isquémico , Hepatopatías , Daño por Reperfusión , Humanos , Hepatectomía/efectos adversos , Precondicionamiento Isquémico/métodos , Daño por Reperfusión/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...