Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; 240: 109810, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38296106

RESUMEN

Rhegmatogenous retinal detachment (RRD) is a type of ophthalmologic emergency, if left untreated, the blindness rate approaches 100 %. The RRD patient postoperative recovery of visual function is unsatisfactory, most notably due to photoreceptor death. We conducted to identify the key genes for oxidative stress (OS) in RRD through bioinformatics analysis and clinical validation, thus providing new ideas for the recovery of visual function in RRD patients after surgery. A gene database for RRD was obtained from the Gene Expression Omnibus (GEO) database (GSE28133). Then we screened differentially expressed OS genes (DEOSGs) from the database and assessed the critical pathways in RRD with Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Protein-protein interaction (PPI) networks and hub genes among the common DEOSGs were identified. In addition, we collected general information and vitreous fluid from 42 patients with RRD and 22 controls [11 each of epiretinal membrane (EM) and macular hole (MH)], examined the expression levels of proteins encoded by hub genes in vitreous fluid by enzyme-linked immunosorbent assay (ELISA) to further assess the relationship between the ELISA data and the clinical characteristics of patients with RRD. Ten hub genes (CCL2, ICAM1, STAT3, CD4, ITGAM, PTPRC, CCL5, IL18, TLR2, VCAM1) were finally screened out from the dataset. The ELISA results showed that, compared with the control group, patients with RRD: TLR2 and ICAM-1 were significantly elevated, and CCL2 had a tendency to be elevated, but no statistically significant; RRD patients and MH patients compared with EM patients: STAT3 and VCAM-1 were significantly elevated. We found affected eyes of RRD patients compared with healthy eyes: temporal and nasal retinal nerve fiber layer (RNFL) were significantly thickened. By correlation analysis, we found that: STAT3 was negatively correlated with ocular perfusion pressure (OPP); temporal RNFL was not only significantly positively correlated with CCL2, but also negatively correlated with Scotopic b-wave amplitude. These findings help us to further explore the mechanism of RRD development and provide new ideas for finding postoperative visual function recovery.


Asunto(s)
Membrana Epirretinal , Desprendimiento de Retina , Perforaciones de la Retina , Humanos , Desprendimiento de Retina/genética , Desprendimiento de Retina/cirugía , Desprendimiento de Retina/metabolismo , Receptor Toll-Like 2/metabolismo , Cuerpo Vítreo/metabolismo , Retina/metabolismo , Membrana Epirretinal/metabolismo , Perforaciones de la Retina/cirugía , Estrés Oxidativo
2.
Environ Microbiol ; 24(3): 1454-1466, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34967095

RESUMEN

Anuran amphibians are susceptible to infection by intestinal nematodes, but the damage and response mechanisms that occur in their intestines after infection are only partially understood. In this study, the intestinal disruption and response mechanisms in Amolops wuyiensis frogs infected with Cosmocercoides wuyiensis n. sp. were revealed through analysis of the intestinal histopathology, digestive enzyme activity, transcriptome and intestinal microbiota. Tissue section analysis showed histological damage and inflammation in the infected intestine, and the digestive enzyme activity indicated a decrease in digestion and absorption of some nutrients. We found that infection led to differences in the intestinal microbiota composition, including lower diversity and symbiotic relationships. The greater relative abundance of the genera Burkholderia and Rhodococcus may enhance intestinal immunity to resist pathogenic infections. A comparison of the transcriptomes of infected and uninfected intestines revealed 1055 differentially expressed genes. GO enrichment and KEGG pathways analyses suggested that the guts of infected C. wuyiensis n. sp. show enhanced complement activation, cell adhesion molecule function, NOD-like receptor signalling pathway activity and other innate immunity responses. Among the adaptive immune responses, the intestinal immune network for IgA production was significantly enriched, and the expression of IL-17D and transforming growth factor beta-1 genes were upregulated in the infected intestine. These results imply that C. wuyiensis n. sp. infection of A. wuyiensis intestine may trigger innate and adaptive immune responses, which reduce the post-infection burden. Furthermore, the intestine of A. wuyiensis may also respond to C. wuyiensis n. sp. infection by increasing metallocarboxypeptidase activity and accelerating smooth muscle contraction.


Asunto(s)
Intestinos , Nematodos , Animales , Anuros/genética , Inmunidad Innata/genética , Nematodos/genética , Transcriptoma
3.
Pest Manag Sci ; 77(10): 4658-4668, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34092014

RESUMEN

BACKGROUND: The brown planthopper (BPH), Nilaparvata lugens, is a serious insect pest of rice. Autophagy and its related gene ATG3 play multiple roles in insects. However, information about the functions of ATG3 in BPH (NlATG3) is unavailable, and its potential as a target for pest control remains unclear. RESULTS: RT-qPCR results showed a relatively low expression of NlATG3 in 1st-4th-instar nymphs, which increased through 9-day-old adults. The expression of NlATG3 increased continuously in 1-day-old through 5-day-old eggs, whereas it decreased thereafter. The mRNA level of NlATG3 was markedly higher in the ovary (1.16) and head (1.00) compared to the rest body parts of BPH adults. Injecting nymphs with dsNlATG3 at doses from 62.5 to 250 ng per insect had strong lethal effect upon them. For the 5th-instar nymphs, all individuals died within 5 days after receiving the dsNlATG3, and importantly, no individual successfully molted. Transmission electron microscopy revealed the new cuticle of nymphs injected with dsNlATG3 became loose and curved, which is clearly different from that of the control. Correspondingly, the obvious vesicles in epidermal cells disappeared after dsNlATG3-treatment. RNAi of NlATG3 significantly reduced the total number of eggs laid per female as well as the eggs' hatchability, especially in the dsNlATG3♀ × dsGFP♂ group, whose total number of eggs laid per female largely decreased by 80.4%, and whose eggs' hatchability was significantly reduced from 95.7% to zero, when compared with the control (dsGFP♀ × dsGFP♂). CONCLUSION: NlATG3 is a promising target for developing RNAi-based insect management strategies. © 2021 Society of Chemical Industry.


Asunto(s)
Hemípteros , Animales , Autofagia , Femenino , Fertilidad , Hemípteros/genética , Humanos , Ninfa/genética , Interferencia de ARN
4.
RSC Adv ; 9(68): 39699-39708, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-35541372

RESUMEN

Transition metal (Cu, Ni, Co) doped MnAl mixed oxide catalysts were prepared through a novel method involving the calcination of hydrotalcite precursors for the selective catalytic reduction of NO x with NH3 (NH3-SCR). The effects of transition metal modification were confirmed by means of XRD, BET, TEM, XPS, NH3-TPD, and H2-TPR measurements. Experimental results evidenced that CoMnAl-LDO presented the highest NO x removal efficiency of over 80% and a relatively high N2 selectivity of over 88% in a broad working temperature range (150-300 °C) among all the samples studied. Moreover, the CoMnAl-LDO sample possessed better stability and excellent resistance to H2O and SO2. The reasons for such results could be associated with the good dispersion of Co3O4 and MnO x , which could consequently provide optimum redox behavior, plentiful acid sites, and strong NO x adsorption ability. Furthermore, dynamics calculations verified the meaningful reduction in apparent activation energy (E a) for the CoMnAl-LDO sample, which is in agreement with the DeNO x activity.

5.
Front Physiol ; 10: 1622, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082181

RESUMEN

Autophagy plays multiple roles in regulating various physiological processes in cells. However, we currently lack a systematic analysis of autophagy and the autophagy-related gene 1 ATG1 in the brown planthopper (BPH, Nilaparvata lugens), one of the most destructive of the insect pests of rice. In this study, the full-length cDNA of an autophagy-related gene, NlATG1, was cloned from BPH. Real-time qPCR (RT-qPCR) revealed that this NlATG1 gene was expressed differently across developmental stages, at higher levels in nymphs but lower levels in adults. RNA interference with dsNlATG1 significantly decreased the mRNA level of the target gene to 14.6% at day 4 compared with that of the dsGFP control group. The survival of the dsNlATG1-treated group decreased significantly from day 4 onward, dropping to 48.3% on day 8. Examination using transmission electron microscopy (TEM) showed that epithelial cells of the BPH's midgut in the dsNlATG1-treated group had less autophagic vacuoles than did the dsGFP control, and knockdown of NlATG1 clearly inhibited the starvation-induced autophagy response in this insect. RNA interference of NlATG1 upregulated the NlFis1 gene involved in mitochondrial fission, leading to reductions in mitochondrial width and area. Furthermore, knockdown of NlATG1 also decreased the ATP content and accumulation of glycogen. Together, these results demonstrate that the NlATG1 gene participates in regulating autophagy and fission of mitochondria in the brown planthopper, making it a potentially promising target for pest control given its key role in autophagy, including maintaining the normal structure and function of mitochondria.

6.
Front Plant Sci ; 9: 710, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29896209

RESUMEN

Brown planthopper (BPH) Nilaparvata lugens Stål is a serious insect pest of rice in Asian countries. Active compounds have close relationship with rice resistance against BPH. In this study, HPLC, MS/MS, and NMR techniques were used to identify active compounds in total flavonoids of rice. As a result, a BPH resistance-associated compound, Peak 1 in HPLC chromatogram of rice flavonoids, was isolated and identified as schaftoside. Feeding experiment with artificial diet indicated that schaftoside played its role in a dose dependent manner, under the concentration of 0.10 and 0.15 mg mL-1, schaftoside showed a significant inhibitory effect on BPH survival (p < 0.05), in comparison with the control. The fluorescent spectra showed that schaftoside has a strong ability to bind with NlCDK1, a CDK1 kinase of BPH. The apparent association constant KA for NlCDK1 binding with schaftoside is 6.436 × 103 L/mol. Docking model suggested that binding of schaftoside might affect the activation of NlCDK1 as a protein kinase, mainly through interacting with amino acid residues Glu12, Thr14 and Val17 in the ATP binding element GXGXXGXV (Gly11 to Val18). Western blot using anti-phospho-CDK1 (pThr14) antibody confirmed that schaftoside treatment suppressed the phosphorylation on Thr-14 site of NlCDK1, thus inhibited its activation as a kinase. Therefore, this study revealed the schaftoside-NlCDK1 interaction mode, and unraveled a novel mechanism of rice resistance against BPH.

7.
J Insect Sci ; 17(3)2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28973571

RESUMEN

The ribosomal proteins play important roles in the growth and development of organisms. This study aimed to explore the function of NlRPL5 (GenBank KX379234), a ribosomal protein L5 gene, in the brown planthopper Nilaparvata lugens. The open reading frame of NlRPL5 was cloned from N. lugens based on a previous transcriptome analysis. The results revealed that the open reading frame of NlRPL5 is of 900 bp, encoding 299 amino acid residues. The reverse transcription quantitative PCR results suggested that the expression of NlRPL5 gene was stronger in gravid females, but was relatively low in nymphs, males, and newly emerged females. The expression level of NlRPL5 in the ovary was about twofolds of that in the head, thorax, or fat body. RNAi of dsNlRPL5 resulted in a significant reduction of mRNA levels, ∼50% decrease in comparison with the dsGFP control at day 6. Treatment of dsNlRPL5 significantly restricted the ovarian development, and decreased the number of eggs laid on the rice (Oryza sativa) plants. This study provided a new clue for further study on the function and regulation mechanism of NlRPL5 in N. lugens.


Asunto(s)
Hemípteros/genética , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cuerpo Adiposo/metabolismo , Femenino , Expresión Génica , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Sistemas de Lectura Abierta , Oryza , Ovario/crecimiento & desarrollo , Ovario/metabolismo , Interferencia de ARN , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ADN
8.
Org Lett ; 17(1): 26-9, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25522129

RESUMEN

The Cu(I)-catalyzed highly enantioselective [3 + 3] cycloaddition between two different 1,3-dipoles, phthalazinium dicyanomethanides and iminoester-derived azomethine ylides, has been achieved under mild reaction conditions, providing novel chiral heterocyclic compounds, 2,3,4,11b-tetrahydro-1H-pyrazino[2,1-a]phthalazine derivatives, in high yields with excellent diastereo- and enantioselectivies (up to 99% yield, 99% ee, >20:1 dr).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...