Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1243849, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670857

RESUMEN

Introduction: Preference and plasticity in nitrogen (N) form uptake are the main strategies with which plants absorb soil N. However, little effort has been made to explore effects of N form acquisition strategies, especially the plasticity, on invasiveness of exotic plants, although many studies have determined the effects of N levels (e.g. N deposition). Methods: To address this problem, we studied the differences in N form acquisition strategies between the invasive plant Solidago canadensis and its co-occurring native plant Artemisia lavandulaefolia, effects of soil N environments, and the relationship between N form acquisition strategy of S. canadensis and its invasiveness using a 15N-labeling technique in three habitats at four field sites. Results: Total biomass, root biomass, and the uptakes of soil dissolved inorganic N (DIN) per quadrat were higher for the invasive relative to the native species in all three habitats. The invader always preferred dominant soil N forms: NH4 + in habitats with NH4 + as the dominant DIN and NO3 - in habitats with NO3 - as the dominant DIN, while A. lavandulaefolia consistently preferred NO3 - in all habitats. Plasticity in N form uptake was higher in the invasive relative to the native species, especially in the farmland. Plant N form acquisition strategy was influenced by both DIN levels and the proportions of different N forms (NO3 -/NH4 +) as judged by their negative effects on the proportional contributions of NH4 + to plant N (f NH4 +) and the preference for NH4 + (ß NH4 +). In addition, total biomass was positively associated with f NH4 + or ß NH4 + for S. canadensis, while negatively for A. lavandulaefolia. Interestingly, the species may prefer to absorb NH4 + when soil DIN and/or NO3 -/NH4 + ratio were low, and root to shoot ratio may be affected by plant nutrient status per se, rather than by soil nutrient availability. Discussion: Our results indicate that the superior N form acquisition strategy of the invader contributes to its higher N uptake, and therefore to its invasiveness in different habitats, improving our understanding of invasiveness of exotic plants in diverse habitats in terms of utilization of different N forms.

2.
Am J Physiol Cell Physiol ; 325(4): C1106-C1118, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37746698

RESUMEN

Sarcolemmal ATP-sensitive potassium (KATP) channels play a vital role in cardioprotection. Cardiac KATP channels are enriched in caveolae and physically interact with the caveolae structural protein caveolin-3 (Cav3). Disrupting caveolae impairs the regulation of KATP channels through several signaling pathways. However, the direct functional effect of Cav3 on KATP channels is still poorly understood. Here, we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and showed that Cav3 greatly reduced KATP channel surface density and current amplitude in a caveolae-independent manner. A screen of Cav3 functional domains revealed that a 25 amino acid region in the membrane attachment domain of Cav3 is the minimal effective segment (MAD1). The peptide corresponding to the MAD1 segment decreased KATP channel current in a concentration-dependent manner with an IC50 of ∼5 µM. The MAD1 segment prevented KATP channel recycling, thus decreasing KATP channel surface density and abolishing the cardioprotective effect of ischemic preconditioning. Our research identified the Cav3 MAD1 segment as a novel negative regulator of KATP channel recycling, providing pharmacological potential in the treatment of diseases with KATP channel trafficking defects.NEW & NOTEWORTHY Cardiac KATP channels physically interact with caveolin-3 in caveolae. In this study, we investigated the functional effect of caveolin-3 on KATP channel activity and identified a novel segment (MAD1) in the C-terminus domain of Caveolin-3 that negatively regulates KATP channel surface density and current amplitude by impairing KATP channel recycling. The peptide corresponding to the MAD1 segment abolished the cardioprotective effect of ischemic preconditioning.

3.
Planta ; 258(3): 61, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37542564

RESUMEN

MAIN CONCLUSION: High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.


Asunto(s)
Nitratos , Xanthium , Nitratos/farmacología , Nitratos/metabolismo , Xanthium/genética , Xanthium/metabolismo , Plantas , Fotosíntesis/genética , Hormonas/metabolismo
4.
Front Plant Sci ; 14: 1169317, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143880

RESUMEN

Introduction: Atmospheric nitrogen (N) deposition has often been considered as a driver of exotic plant invasions. However, most related studies focused on the effects of soil N levels, and few on those of N forms, and few related studies were conducted in the fields. Methods: In this study, we grew Solanum rostratum, a notorious invader in arid/semi-arid and barren habitats, and two coexisting native plants Leymus chinensis and Agropyron cristatum in mono- and mixed cultures in the fields in Baicheng, northeast China, and investigated the effects of N levels and forms on the invasiveness of S. rostratum. Results: Compared with the two native plants, S. rostratum had higher aboveground and total biomass in both mono- and mixed monocultures under all N treatments, and higher competitive ability under almost all N treatments. N addition enhanced the growth and competitive advantage of the invader under most conditions, and facilitated invasion success of S. rostratum. The growth and competitive ability of the invader were higher under low nitrate relative to low ammonium treatment. The advantages of the invader were associated with its higher total leaf area and lower root to shoot ratio compared with the two native plants. The invader also had a higher light-saturated photosynthetic rate than the two native plants in mixed culture (not significant under high nitrate condition), but not in monoculture. Discussion: Our results indicated that N (especially nitrate) deposition may also promote invasion of exotic plants in arid/semi-arid and barren habitats, and the effects of N forms and interspecific competition need to be taken into consideration when studying the effects of N deposition on invasion of exotic plants.

5.
Front Plant Sci ; 13: 1035137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388472

RESUMEN

Soil nitrogen forms are important for exotic plant invasions. However, little effort has been made to study the molecular mechanisms underlying the utilization of different N forms in co-occurring invasive and native plants. The invasive plant Xanthium strumarium prefers nitrate relative to ammonium, and mainly invades nitrate-dominated environments, while it co-occurring native congener X. sibiricum prefers ammonium. Here, we addressed the genetic bases for the interspecific difference in ammonium use and the effects of gibberellin (GA). Twenty-six transcripts related with GA biosynthesis and ammonium utilization were induced by ammonium in X. sibiricum, while only ten in X. strumarium and none for ammonium uptake. XsiAMT1.1a, XsiGLN1.1 and XsiGLT1b may be crucial for the strong ability to absorb and assimilate ammonium in X. sibiricum. All tested transcripts were significantly up-regulated by GA1 and GA4 in X. sibiricum. XsiGA3OX1a, which was also induced by ammonium, may be involved in this regulation. Consistently, glutamine synthetase activity increased significantly with increasing ammonium-N/nitrate-N ratio for X. sibiricum, while decreased for X. strumarium. Our study is the first to determine the molecular mechanisms with which invasive and native plants use ammonium differently, contributing to understanding the invasion mechanisms of X. strumarium and its invasion habitat selection.

6.
Front Plant Sci ; 13: 999748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275581

RESUMEN

Few studies explore the effects of nitrogen forms on exotic plant invasions, and all of them are conducted from the perspective of nitrogen form utilization without considering the effects of ammonium toxicity. The invasive plant Xanthium strumarium prefers to use nitrate, while its native congener X. sibiricum prefers to use ammonium, and the invader is more sensitive to high ammonium based on our preliminary observations. To further reveal the effects of nitrogen forms on invasiveness of X. strumarium, we studied the difference and related physiological mechanisms in sensitivity to ammonium between these species. With increasing ammonium, total biomass, root to shoot ratio and leaf chlorophyll content of X. strumarium decreased, showing ammonium toxicity. For X. sibiricum, however, ammonium toxicity did not occurr. With increasing ammonium, ammonium concentration increased in leaves and roots of X. strumarium, which is associated with the decreased activities of glutamine synthetase and glutamate synthase and the increased ammonium uptake; and consequently the contents of hydrogen peroxide and malondialdehyde also increased, which is associated with the decreased contents of reduced glutathione and ascorbic acid. By contrast, the abilities of ammonium assimilation and antioxidation of X. sibiricum were less affected by the increase of ammonium, and the contents of ammonium nitrogen, hydrogen peroxide and malondialdehyde in leaves and roots were significantly lower than those in X. strumarium. Our results indicate that ammonium accumulation and oxidative damage may be the physiological mechanisms for the ammonium toxicity of X. strumarium, providing a possible explanation that it generally invades nitrate-dominated and disturbed habitats and a theoretical basis for future studies on the control of invasive plants by regulating soil nitrogen.

7.
Front Plant Sci ; 13: 904326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212307

RESUMEN

Increasing evidence from low-latitude ranges has demonstrated that native parasitic plants are promising biocontrol agents for some major invasive weeds. However, related mechanisms and the effect of environments on the control effect of the parasite are still unclear. In addition, few related studies have been conducted in high latitude (>40°), where the exotic plant richness is the highest in the globe, but natural enemies are relatively scarce. During field surveys, a Cuscuta species was found on the cosmopolitan invasive weed Ambrosia trifida L. in Shenyang, northeast China. Here, we first studied the impacts of the parasite on the invader at three sites with different light regimes and related mechanisms, then the haustorial connections between the parasite and the invader using anatomy and measurement of carbon (C) and nitrogen (N) stable isotope compositions (δ13C, δ15N), and finally identified the parasite using two molecular marks. The parasite was identified as C. japonica Choisy. This native holoparasitic vine posed serious C rather than N limitation to the invader, explaining its greatly inhibitory effects on the invader. Its negative effects were stronger on reproductive relative to vegetative growth, and at high relative to low light habitats, which indicated that the higher the vigor of the host is, the higher the impact of the parasite pose. The parasite could establish haustorial connections with phloem, xylem, and pith of the invader and thus obtain resources from both leaves and roots, which was confirmed by difference of δ13C and δ15N between the two species. The parasite had significantly higher leaf C concentrations and δ13C than its invasive host, being a strong C sink of the parasitic association. Our results indicate that C. japonica may be a promising biological control agent for the noxious invader in China.

8.
Channels (Austin) ; 16(1): 137-147, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35754325

RESUMEN

ATP-sensitive K+ (KATP) channel couples membrane excitability to intracellular energy metabolism. Maintaining KATP channel surface expression is key to normal insulin secretion, blood pressure and cardioprotection. However, the molecular mechanisms regulating KATP channel internalization and endocytic recycling, which directly affect the surface expression of KATP channels, are poorly understood. Here we used the cardiac KATP channel subtype, Kir6.2/SUR2A, and characterized Rab35 GTPase as a key regulator of KATP channel endocytic recycling. Electrophysiological recordings and surface biotinylation assays showed decreased KATP channel surface density with co-expression of a dominant negative Rab35 mutant (Rab35-DN), but not other recycling-related Rab GTPases, including Rab4, Rab11a and Rab11b. Immunofluorescence images revealed strong colocalization of Rab35-DN with recycling Kir6.2. Rab35-DN minimized the recycling rate of KATP channels. Rab35 also regulated KATP channel current amplitude in isolated adult cardiomyocytes by affecting its surface expression but not channel properties, which validated its physiologic relevance and the potential of pharmacologic target for treating the diseases with KATP channel trafficking defects.


Asunto(s)
GTP Fosfohidrolasas , Canales KATP , Adenosina Trifosfato/metabolismo , Transporte Biológico , GTP Fosfohidrolasas/metabolismo , Canales KATP/genética , Canales KATP/metabolismo , Miocitos Cardíacos/metabolismo
9.
Am J Bot ; 109(6): 910-921, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35471767

RESUMEN

PREMISE: Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS: We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS: Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS: Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.


Asunto(s)
Sequías , Herbivoria , Especies Introducidas , Hojas de la Planta/fisiología , Plantas
10.
Oecologia ; 198(3): 593-603, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35129681

RESUMEN

Phenotypic plasticity index (PI), the slope of reaction norm (K) and relative distances plasticity index (RDPI), the most commonly used estimators, have occasionally been found to generate different plasticity rankings between groups (species, populations, cultivars or genotypes). However, no effort has been made to determine how frequent this incongruence is, and the factors that influence the occurrence of the incongruence. To address these problems, we first proposed a conceptual framework and then tested the framework (its predictions) by reanalyzing 1248 sets of published data. Our framework reveals inherent conflicts between K and PI or RDPI when comparing plasticity between two groups, and the frequency of these conflicts increases with increasing inter-group initial trait difference and/or K values of the groups compared. More importantly, the estimators also affect the magnitude of the inter-group plasticity differences even when they do not change groups' plasticity rankings. The above-mentioned effects of plasticity estimators were confirmed by our empirical test using data from the literature, and the conflicts occur in 203 (16%) of the 1248 comparisons between K and indices, indicating that a considerable proportion of the comparative conclusions on plasticity in literature are estimator-dependent. The frequency of the conflicts is influenced by phylogenetic relatedness of the groups compared, being lower when comparing within relative to between species, but not by specific types of environments, traits and species. Our study indicates that care is needed to select estimator when comparing groups' plasticity, and that the conclusions in relevant literature should be treated with great caution.


Asunto(s)
Adaptación Fisiológica , Genotipo , Fenotipo , Filogenia
11.
Physiol Plant ; 174(1): e13637, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35092017

RESUMEN

High-phenotypic plasticity has long been considered as a characteristic promoting exotic plant invasions. However, the results of the studies testing this hypothesis are still inconsistent. Overlooking the effects of species resource requirements and environmental resource availability may be the main reasons for the ambiguous conclusions. Here, we compared phenotypic plasticity between five noxious invasive species with different nutrient requirements (evaluated using the soil nutrient status of their natural distribution ranges) and their phylogenetically related natives under five nutrient levels. We found that species with high-nutrient requirements showed greater plasticity of total biomass than species with low-nutrient requirements, regardless of their status (invasive or native). Invasives with high-nutrient requirements had greater growth plasticity than their related natives, which may contribute to their invasiveness under high-nutrient environments. However, compared with the related natives, a higher growth plasticity may not help exotic species with low-nutrient requirements to invade nutrient-rich habitats, and exotic species with high-nutrient requirements to invade nutrient-limited habitats. In contrast, invasives with low-nutrient requirements exhibited lower growth plasticity than their related natives, contributing to their invasiveness under nutrient-limited habitats. Functional traits showed growth-related plasticity in only 10 cases (3.8%), and there was no functional trait whose plastic response to soil nutrients was beneficial to exotic plant invasions. Our study indicates that low-growth plasticity could also promote exotic plant invasions, high plasticity may not necessarily lead to invasiveness. We must test the adaptive significance of plasticity of functional traits when studying its biological roles.


Asunto(s)
Plantas , Suelo , Adaptación Fisiológica , Ecosistema , Especies Introducidas , Nutrientes
12.
PLoS One ; 15(11): e0228476, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211690

RESUMEN

Xanthium strumarium is native to North America and now has become one of the invasive alien species (IAS) in China. In order to detect the effects of the invader on biodiversity and evaluate its suitable habitats and ecological distribution, we investigated the abundance, relative abundance, diversity indices, and the number of the invasive and native plants in paired invaded and non-invaded quadrats in four locations in North and Northeast China. We also analyzed the effects of monthly mean maximum and minimum temperatures, relative humidity (%), and precipitations (mm). Strong positive significant (P < 0.01) correlation and maximum interspecific competition (41%) were found in Huailai between invaded and non-invaded quadrats. Shannon's Diversity Index showed that non-invaded plots had significantly (P < 0.05) more diversified species than invaded ones. The significant (P < 0.05) Margalef's Richness Index was found in Huailai and Zhangjiakou in non-invaded recorded heterogeneous nature of plant communities. Similarly, significant (P < 0.05) species richness found in Huailai and Zhangjiakou in non-invaded quadrats compared to invaded ones. Maximum evenness of Setaria feberi (0.47, 0.37), Seteria viridis (0.43) found in Fushun and Zhangjiakou recorded more stable in a community compared to other localities. Evenness showed positive relationship of Shannon Entropy within different plant species. The higher dissimilarity in plant communities found in Huailai (87.06%) followed by Yangyuan (44.43%), Zhangjiakou (40.13%) and Fushun (29.02%). The significant (P < 0.01) value of global statistics R (0.943/94.3%) showed high species diversity recorded in Huailai followed by Zhangjiakou recorded by non-metric multidimensional scaling and analysis of similarity between invaded and non-invaded plots. At the end it was concluded that the diversity indices reduced significantly (P < 0.05) in invaded quadrats indicated that native plant species become less diverse due to X. strumarium invasion. The degrees of X. strumarium invasion affected on species richness resulted to reduce diversity indices significantly in invaded quadrats.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas/estadística & datos numéricos , Fenómenos Fisiológicos de las Plantas , Xanthium/fisiología , China
13.
BMC Chem ; 14(1): 48, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32789300

RESUMEN

BACKGROUND: Insect species composition is an important phenomenon playing a significant role in the ecosystem. Chemical control of insects and pests releases toxic materials to the environment. These chemicals are dangerous to human populations. In this situation, there is a dire need to develop strategies to overcome the haphazard use of chemicals. The present investigations were carried out to explore the diversity of different insects attracted through bait fermentation. METHODS: The traditionally prepared bait fermentation was used to attract different insect populations both in treated (traps installed near field crops) and control traps (traps installed near invasive weed). Abundance, evenness, richness and equitability of these trapped insects were calculated. The chemical screening of bait fermentation was done using Gas Chromatography and Mass Spectrometry (GC-MS). RESULTS: Significant difference (P < 0.05) in abundance of insect populations was found in treated compared to control trap. The insects of Noctuidae family recorded high Shannon- Wiener's diversity index followed by Muscidae. Margalef's index was recorded maximum in the treated traps (10.77) compared to those of control (8.09). The yielded index indicated that maximum richness was found in bait treated compared to control. The Shannon's equitability's values were investigated higher in Noctuidae (1.48), while, maximum evenness was observed in Muscidae (2.05) in treated trap. This fermentation was dried at room temperature and ground at 0.1 micron size. Our result showed significant (P < 0.05) effects of extraction times, with high yield in first extraction by polar solvents. Co-efficient of determination (R 2 = 0.87) recorded similar results in both extractions, however high root mean square error (0.97) recorded with bait + distilled water solvent showed linear arc line gave better performance. Finally, this fermentation was analyzed using GC-MS and recorded volatile compounds that were involved in the attraction of major and minor pests. CONCLUSION: Fermentation can help for the attraction of different families of insects of various crops. The field experiment suggested that this fermentation is economical, easily installed and consumed only 0.64 RMB/0.09 USD, including infrastructures per location. Bait fermentation is safe biochemical constituents and did not spread any toxic chemicals to the environment.

14.
Sci Total Environ ; 723: 137829, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32203801

RESUMEN

Empirical evidence of enemy release is still inconsistent for invasive alien plant species, although enemy release is the key assumption for both the enemy release hypothesis (ERH) and the evolution of increased competitive ability hypothesis (EICA). In addition, little effort has been made to test this assumption in terms of defense investment using a multi-species comparative approach. Using a phylogenetically controlled within-study meta-analytical approach, we compared leaf herbivore damage, structural defenses and nutrients between 47 pairs of invasive versus native and/or non-invasive alien plants in China. The invasive relative to the co-occurring native or non-invasive (native and non-invasive alien) plants incurred lesser leaf herbivore damage, had lesser leaf concentrations of cellulose, hemicellulose, lignin and carbon, lesser leaf density and carbon or lignin to nitrogen ratio but greater nutrients, which may facilitate success of the invasive plants. The lesser structural investment did not result in lesser leaf construction costs for the invaders, which may be associated with their greater leaf nitrogen concentration. However, the invasive plants were not significantly different from the non-invasive alien plants in any trait. Our results provide strong evidence for ERH, also are consistent with EICA, and indicate that enemy release may be an important factor in alien plant invasions.


Asunto(s)
Herbivoria , Especies Introducidas , China , Nutrientes , Plantas
15.
Oecologia ; 192(1): 105-118, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31792607

RESUMEN

Multiple mechanisms may act synergistically to promote success of invasive plants. Here, we tested the roles of three non-mutually exclusive mechanisms-founder effects, post-introduction evolution and phenotypic plasticity-in promoting invasion of Chromolaena odorata. We performed a common garden experiment to investigate phenotypic diversification and phenotypic plasticity of the genetically impoverished invader in response to two rainfall treatments (ambient and 50% rainfall). We used ancestor-descendant comparisons to determine post-introduction evolution and the QST-FST approach to estimate past selection on phenotypic traits. We found that eight traits differed significantly between plants from the invasive versus native ranges, for two of which founder effects can be inferred and for six of which post-introduction evolution can be inferred. The invader experienced strong diversifying selection in the invasive range and showed clinal variations in six traits along water and/or temperature gradients. These clinal variations are likely attributed to post-introduction evolution rather than multiple introductions of pre-adapted genotypes, as most of the clinal variations were absent or in opposite directions from those for native populations. Compared with populations, rainfall treatments explained only small proportions of total variations in all studied traits for plants from both ranges, highlighting the importance of heritable phenotypic differentiation. In addition, phenotypic plasticity was similar for plants from both ranges although neutral genetic diversity was much lower for plants from the invasive range. Our results showed that founder effects, post-introduction evolution and phenotypic plasticity may function synergistically in promoting invasion success of C. odorata.


Asunto(s)
Evolución Biológica , Efecto Fundador , Adaptación Fisiológica , Especies Introducidas , Fenotipo
16.
Front Genet ; 9: 293, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30108608

RESUMEN

Zearalenone (ZEA) is a natural contaminant existing in food and feed products that exhibits a negative effect on domestic animals' reproduction. Donkeys possess high economic value in China and are at risk of exposure to ZEA. However, few information is available on ZEA-induced toxicity and no report on toxicity in donkeys can be found in scientific literature. We investigated the biological effects of ZEA exposure on donkey granulosa cells (dGCs) by using RNA-seq analysis. ZEA at 10 and 30 µM were administered to GCs within 72 h of in vitro culture. ZEA at 10 µM significantly altered the tumorigenesis associated genes in dGCs. Exposure to 10 and 30 µM ZEA treatment significantly reduced mRNA expression of PTEN, TGFß, ATM, and CDK2 genes, particularly, the ZEA treatment significantly increased the expression of PI3K and AKT genes. Furthermore, immunofluorescence, RT-qPCR, and Western blot analysis verified the gene expression of ZEA-exposed GCs. Collectively, these results demonstrated the deleterious effect of ZEA exposure on the induction of ovarian cancer related genes via the PTEN/PI3K/AKT signaling pathway in dGCs in vitro.

17.
Front Genet ; 9: 667, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619484

RESUMEN

Zearalenone (ZEA), one of the most prevalent estrogenic mycotoxins, is mainly produced by Fusarium fungi and has been proven to affect the reproductive capacity of animals. Exposure of farm animals to ZEA is a global public health concern because of its toxicity and wide distribution in animal feeds. In vitro and in vivo experiments indicate that ZEA possesses estrogenic activity in mice, swine, Equus asinus and cattle. The precise mechanism of the reproductive toxicity of ZEA has not been established yet. This article reviews evidence on the deleterious effects of ZEA on mammalian folliculogenesis from early to final oogenesis stages. Such effects include impaired granulosa cell (GC) development and follicle steroidogenesis, reduced oocyte nest breakdown, damaged meiotic progression, poor fetal oocyte survival, accelerated primordial follicle activation and enhanced follicle atresia. These phenomena may result in reproductive and non-reproductive problems in domestic animals. In addition, emerging data indicates that ZEA may cause mRNA expression changes in the GCs. In general, E. asinus is more sensitive than swine to ZEA exposure. Finally, results of in vivo animal studies and in vitro tests are reported and discussed.

18.
Physiol Plant ; 160(4): 373-382, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28321883

RESUMEN

The roles of photosynthesis-related traits in invasiveness of introduced plant species are still not well elucidated, especially in nutrient-poor habitats. In addition, little effort has been made to determine the physiological causes and consequences of the difference in these traits between invasive and native plants. To address these problems, we compared the differences in 16 leaf functional traits related to light-saturated photosynthetic rate (Pmax ) between 22 invasive and native plants in a nutrient-poor habitat in northeast China. The invasive plants had significantly higher Pmax , photosynthetic nitrogen- (PNUE), phosphorus- (PPUE), potassium- (PKUE) and energy-use efficiencies (PEUE) than the co-occurring natives, while leaf nutrient concentrations, construction cost (CC) and specific leaf area were not significantly different between the invasive and native plants. The higher PNUE contributed to higher Pmax for the invasive plants, which in turn contributed to higher PPUE, PKUE and PEUE. CC changed independently with other traits such as Pmax , PNUE, PPUE, PKUE and PEUE, showing two trait dimensions, which may facilitate acclimation to multifarious niche dimensions. Our results indicate that the invasive plants have a superior resource-use strategy, i.e. higher photosynthesis under similar resource investments, contributing to invasion success in the barren habitat.


Asunto(s)
Carbono/metabolismo , Metabolismo Energético , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis , Plantas/metabolismo , China , Ecosistema , Especies Introducidas , Fenotipo , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Especificidad de la Especie
19.
PLoS One ; 10(7): e0133258, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26208029

RESUMEN

Prior to the mechanization of agriculture and labor-intensive tasks, humans used donkeys (Equus africanus asinus) for farm work and packing. However, as mechanization increased, donkeys have been increasingly raised for meat, milk, and fur in China. To maintain the development of the donkey industry, breeding programs should focus on traits related to these new uses. Compared to conventional marker-assisted breeding plans, genome- and transcriptome-based selection methods are more efficient and effective. To analyze the coding genes of the donkey genome, we assembled the transcriptome of donkey white blood cells de novo. Using transcriptomic deep-sequencing data, we identified 264,714 distinct donkey unigenes and predicted 38,949 protein fragments. We annotated the donkey unigenes by BLAST searches against the non-redundant (NR) protein database. We also compared the donkey protein sequences with those of the horse (E. caballus) and wild horse (E. przewalskii), and linked the donkey protein fragments with mammalian phenotypes. As the outer ear size of donkeys and horses are obviously different, we compared the outer ear size-associated proteins in donkeys and horses. We identified three ear size-associated proteins, HIC1, PRKRA, and KMT2A, with sequence differences among the donkey, horse, and wild horse loci. Since the donkey genome sequence has not been released, the de novo assembled donkey transcriptome is helpful for preliminary investigations of donkey cultivars and for genetic improvement.


Asunto(s)
Equidae/genética , Caballos/genética , Leucocitos/metabolismo , Transcriptoma , Animales , Bases de Datos de Proteínas , Equidae/metabolismo , Caballos/metabolismo , Fenotipo
20.
New Phytol ; 205(3): 1350-1359, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367824

RESUMEN

The evolution of increased competitive ability (EICA) hypothesis and the novel weapons hypothesis (NWH) are two non-mutually exclusive mechanisms for exotic plant invasions, but few studies have simultaneously tested these hypotheses. Here we aimed to integrate them in the context of Chromolaena odorata invasion. We conducted two common garden experiments in order to test the EICA hypothesis, and two laboratory experiments in order to test the NWH. In common conditions, C. odorata plants from the nonnative range were better competitors but not larger than plants from the native range, either with or without the experimental manipulation of consumers. Chromolaena odorata plants from the nonnative range were more poorly defended against aboveground herbivores but better defended against soil-borne enemies. Chromolaena odorata plants from the nonnative range produced more odoratin (Eupatorium) (a unique compound of C. odorata with both allelopathic and defensive activities) and elicited stronger allelopathic effects on species native to China, the nonnative range of the invader, than on natives of Mexico, the native range of the invader. Our results suggest that invasive plants may evolve increased competitive ability after being introduced by increasing the production of novel allelochemicals, potentially in response to naïve competitors and new enemy regimes.


Asunto(s)
Alelopatía , Evolución Biológica , Chromolaena/fisiología , Especies Introducidas , Modelos Biológicos , Clima Tropical , Biomasa , Chromolaena/crecimiento & desarrollo , Geografía , Sesquiterpenos/análisis , Sesquiterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...