Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucl Med Biol ; 134-135: 108916, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38703587

RESUMEN

INTRODUCTION: Targeted α-particle therapy agents have shown promising responses in patients who have developed resistance to ß--particle emitting radionuclides, albeit off-target toxicity remains a concern. Astatine-211 emits only one α-particle per decay and may alleviate the toxicity from α-emitting daughter radionuclides. Previously, we developed the low-molecular-weight PSMA-targeted agent [211At]L3-Lu that showed suitable therapeutic efficacy and was well tolerated in mice. Although [211At]L3-Lu had good characteristics, we now have evaluated a closely related analogue, [211At]YF2, to determine the better molecule for clinical translation. METHODS: The tin precursors and unlabeled iodo standards for [211At]YF2 and [211At]L3-Lu each were synthesized and a new one-step labeling method was developed to produce [211At]YF2 and [211At]L3-Lu from the respective tin precursor. RCY and RCP were determined using RP-HPLC. Cell uptake, internalization and in vitro cell-killing (MTT) assays were performed on PSMA+ PC-3 PIP cells in parallel experiments to compare [211At]YF2 and [211At]L3-Lu directly. A paired-label biodistribution study was performed in athymic mice with subcutaneous PSMA-positive PC-3 PIP xenografts as a head-to-head comparison of [131I]YF2 and [125I]L3-Lu. The tissue distribution of [211At]YF2 and [211At]L3-Lu were determined individually in the same animal model. RESULTS: The syntheses of tin precursors and unlabeled iodo standards were accomplished in reasonable yields. A streamlined and scalable radiolabeling method (1 h total synthesis time) was developed for the radiosynthesis of both [211At]YF2 and [211At]L3-Lu with 86 ± 7 % (n = 10) and 87 ± 5 % (n = 7) RCY, respectively, and > 95 % RCP for both. The maximum activity of [211At]YF2 produced to date was 666 MBq. An alternative method that did not involve HPLC purification was developed that provided similar RCY and RCP. Significantly higher cell uptake, internalization and cytotoxicity was seen for [211At]YF2 compared with [211At]L3-Lu. Significantly higher uptake and longer retention in tumor was seen for [131I]YF2 than for co-administered [125I]L3-Lu, while considerably higher renal uptake was seen for [131I]YF2. The biodistribution of [211At]YF2 was consistent with that of [131I]YF2. CONCLUSION: [211At]YF2 exhibited higher cellular uptake, internalization and cytotoxicity than [211At]L3-Lu on PSMA-positive PC3 PIP cells. Likewise, higher uptake and longer retention in tumor was seen for [211At]YF2. Experiments to evaluate the dosimetry and therapeutic efficacy of [211At]YF2 are under way.

2.
Nucl Med Biol ; 134-135: 108913, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38703588

RESUMEN

INTRODUCTION: Single domain antibody fragments (sdAbs) are an appealing scaffold for radiopharmaceutical development due to their small size (~15 kDa), high solubility, high stability, and excellent tumor penetration. Previously, we developed NB7 sdAb, which has very high affinity for an epitope on PSMA that is different from those targeted by small molecule PSMA inhibitors. Herein, we evaluated NB7 after radioiodination using [*I]SGMIB (1,3,4-isomer) and iso-[*I]SGMIB (1,3,5-isomer), as well as their 211At-labeled analogues. METHODS: [*I]SGMIB, iso-[*I]SGMIB, [211At]SAGMB, and iso-[211At]SAGMB conjugates of NB7 sdAb were synthesized and their binding affinity, cell uptake and internalization were assessed in PSMA+ PC3 PIP and PSMA- PC3 flu cells. Biodistribution studies were performed in mice bearing PSMA+ PC3 PIP xenografts. First, a single-label experiment evaluated the tissue distribution of a NB7 bearing a His6-tag (NB7H6) and labeled with iso-[125I]SGMIB. Three paired-label experiments then were performed to compare: a) NB7 labeled using [*I]SGMIB and iso-[*I]SGMIB, b) 131I- vs 211At-labeled NB7 conjugates and c) [125I]SGMIB-NB7H6 to the small molecule PSMA inhibitor [131I]YF2. RESULTS: All NB7 radioconjugates bound specifically to PSMA with dissociation constants, Kd, in the low nM range (1.4-6.4 nM). An initial biodistribution study demonstrated good tumor uptake for iso-[125I]SGMIB-NB7H6 (7.2 ± 1.5 % ID/g at 1 h) and no deleterious effect of the His6-tag on renal activity levels, which declined to 3.1 ± 1.1 % ID/g by 4 h. Paired-label biodistribution found no distinction between the two SGMIB isomer NB7 conjugates with the [131I]SGMIB-NB7-to-iso-[125I]SGMIB-NB7 tumor uptake ratios not significantly different from unity: 1.06 ± 0.08 at 1 h, 1.04 ± 0.12 at 4 h, and 1.07 ± 0.09 at 24 h. Both isomer conjugates cleared rapidly from normal tissues and exhibited very low uptake in thyroid, lacrimal and salivary glands. Paired-label biodistribution of [131I]SGMIB-NB7H6 and [211At]SAGMB-NB7H6 demonstrated similar tumor uptake and kidney clearance for the two radioconjugates. However, levels of 211At in thyroid, stomach, salivary and lacrimal glands were significantly higher (P < 0.05) that those for 131I suggesting greater dehalogenation for [211At]SAGMB-NB7H6. Finally, co-administration of [125I]SGMIB-NB7H6 and [131I]YF2 demonstrated good tumor uptake for both with considerably more rapid renal clearance for the NB7 radioconjugate. CONCLUSION: NB7 radioconjugates exhibited good accumulation in PSMA-positive xenografts with rapid clearance from kidney and other normal tissues. We conclude that NB7 is a potentially useful scaffold for developing PSMA-targeted theranostics with different characteristics than current small molecule and antibody-based approaches.

3.
mBio ; 15(5): e0040824, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38619241

RESUMEN

In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species Halorubrum ezzemoulense (Hez). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members. Most notably, we observe rearrangements that have led to the insertion/recombination/replacement of mutually exclusive genomic islands in equivalent genome positions ("homeocassettes"). These conflicting islands encode for similar functions, but homologs from islands located between the same core genes exhibit high divergence on the amino acid level, while the neighboring core genes are nearly identical. Both islands of a homeocassette often coexist in the same geographic location, suggesting that either island may be beyond the reach of selective sweeps and that these loci of divergence between Hez members are maintained and persist long term. This implies that subsections of the population have different niche preferences and rare metabolic capabilities. After an evaluation of the gene content in the homeocassettes, we speculate that these islands may play a role in the speciation, niche adaptability, and group selection dynamics in Hez. Though homeocassettes are first described in this study, similar replacements and divergence of genes on genomic islands have been previously reported in other Haloarchaea and distantly related Archaea, suggesting that homeocassettes may be a feature in a wide range of organisms outside of Hez.IMPORTANCEThis study catalogs the rare genes discovered in strains of the species Halorubrum ezzemoulense (Hez), an obligate halophilic archaeon, through the perspective of its pan-genome. These rare genes are often found to be arranged on islands that confer metabolic and transport functions and contain genes that have eluded previous studies. The discovery of divergent, but homologous islands occupying equivalent genome positions ("homeocassettes") in different genomes, reveals significant new information on genome evolution in Hez. Homeocassette pairs encode for similar functions, but their dissimilarity and distribution imply high rates of recombination, different specializations, and niche preferences in Hez. The coexistence of both islands of a homeocassette pair in multiple environments demonstrates that both islands are beyond the reach of selective sweeps and that these genome content differences between strains persist long term. The switch between islands through recombination under different environmental conditions may lead to a greater range of niche adaptability in Hez.


Asunto(s)
Genoma Arqueal , Islas Genómicas , Halorubrum , Halorubrum/genética , Halorubrum/clasificación , Genómica , Evolución Molecular , Variación Genética , Filogenia
4.
PNAS Nexus ; 2(11): pgad354, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38024399

RESUMEN

Inteins are mobile genetic elements that invade conserved genes across all domains of life and viruses. In some instances, a single gene will have several intein insertion sites. In Haloarchaea, the minichromosome maintenance (MCM) protein at the core of replicative DNA helicase contains four intein insertion sites within close proximity, where two of these sites (MCM-a and MCM-d) are more likely to be invaded. A haloarchaeon that harbors both MCM-a and MCM-d inteins, Haloferax mediterranei, was studied in vivo to determine intein invasion dynamics and the interactions between neighboring inteins. Additionally, invasion frequencies and the conservation of insertion site sequences in 129 Haloferacales mcm homologs were analyzed to assess intein distribution across the order. We show that the inteins at MCM-a and MCM-d recognize and cleave their respective target sites and, in the event that only one empty intein invasion site is present, readily initiate homing (i.e. single homing). However, when two inteins are present co-homing into an intein-free target sequence is much less effective. The two inteins are more effective when invading alleles that already contain an intein at one of the two sites. Our in vivo and computational studies also support that having a proline in place of a serine as the first C-terminal extein residue of the MCM-d insertion site prevents successful intein splicing, but does not stop recognition of the insertion site by the intein's homing endonuclease.

5.
J Nucl Med ; 64(1): 124-130, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618478

RESUMEN

Single-domain antibody fragments (sdAbs) are attractive for targeted α-particle therapy, particularly with 211At, because of their rapid accumulation in tumor and clearance from normal tissues. Here, we evaluate the therapeutic potential of this strategy with 5F7 and VHH_1028-2 sdAbs that bind with high affinity to domain IV of human epidermal growth factor receptor type 2 (HER2). Methods: The HER2-specific sdAbs and HER2-irrelevant VHH_2001 were labeled using N-succinimidyl-3-211At-astato-5-guanidinomethyl benzoate (iso-211At-SAGMB). The cytotoxicity of iso- 211At-SAGMB-5F7 and iso- 211At-SAGMB-VHH_2001 were compared on HER2-expressing BT474 breast carcinoma cells. Three experiments in mice with subcutaneous BT474 xenografts were performed to evaluate the therapeutic effectiveness of single doses of iso- 211At-SAGMB-5F7 (0.7-3.0 MBq), iso- 211At-SAGMB-VHH_1028 (1.0-3.0 MBq), and iso- 211At-SAGMB-VHH_1028 and iso- 211At-SAGMB-VHH_2001 (∼1.0 MBq). Results: Clonogenic survival of BT474 cells was reduced after exposure to iso- 211At-SAGMB-5F7 (D0 = 1.313 kBq/mL) whereas iso- 211At-SAGMB-VHH_2001 was ineffective. Dose-dependent tumor growth inhibition was observed with 211At-labeled HER2-specific 5F7 and VHH_1028 but not with HER2-irrelevant VHH_2001. At the 3.0-MBq dose, complete tumor regression was seen in 3 of 4 mice treated with iso- 211At-SAGMB-5F7 and 8 of 11 mice treated with iso- 211At-SAGMB-VHH_1028; prolongation in median survival was 495% and 414%, respectively. Conclusion: Combining rapidly internalizing, high-affinity HER2-targeted sdAbs with the iso- 211At-SAGMB residualizing prosthetic agent is a promising strategy for targeted α-particle therapy of HER2-expressing cancers.


Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Animales , Ratones , Femenino , Anticuerpos de Dominio Único/uso terapéutico , Anticuerpos de Dominio Único/metabolismo , Xenoinjertos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Resultado del Tratamiento
6.
J Med Chem ; 65(22): 15358-15373, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36368007

RESUMEN

Because of their rapid tumor accumulation and normal tissue clearance, single-domain antibody fragments (sdAbs) are an attractive vehicle for developing radiotherapeutics labeled with the α-emitter 211At. Herein, we have evaluated iso-[211At]AGMB-PODS, a prosthetic agent that combines a functionality for residualizing radiohalogens with a phenyloxadiazolyl methylsulfone (PODS) moiety for site-specific sdAb conjugation. Iso-[211At]AGMB-PODS and its radioiodinated analogue were evaluated for thiol-selective conjugation to anti-HER2 5F7 sdAb bearing a C-terminus GGC tail. Both radiohalogenated PODS-5F7GGC conjugates were synthesized in good radiochemical yields and retained high binding affinity on HER2-positive BT474 breast carcinoma cells. Iso-[211At]AGMB-PODS-5F7GGC was considerably more stable in vitro than its maleimide analogue in the presence of cysteine and human serum albumin (HSA) and exhibited excellent tumor uptake and high in vivo stability. Superior tumor-to-kidney activity ratios were seen for both radiohalogenated PODS-5F7GGC conjugates compared with [177Lu]Lu-DOTA-PODS-5F7GGC. These results suggest that iso-[211At]AGMB-PODS-5F7GGC warrants further evaluation for the treatment of HER2-expressing malignancies.


Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Humanos , Femenino , Receptor ErbB-2/metabolismo , Distribución Tisular , Radiofármacos/química , Neoplasias de la Mama/patología , Línea Celular Tumoral
7.
Sci Rep ; 12(1): 3020, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194100

RESUMEN

Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Expresión Génica/genética , Fragmentos de Inmunoglobulinas/uso terapéutico , Radioisótopos de Yodo/farmacología , Radioisótopos de Yodo/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Radiofármacos/farmacología , Radiofármacos/uso terapéutico , Receptor ErbB-2/genética , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Receptor ErbB-2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Nucl Med ; 63(2): 259-267, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34088772

RESUMEN

α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding ß-particle therapy. 211At is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new 211At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent. Methods: A small series of 125I-labeled compounds was synthesized from tin precursors to evaluate the effect of the location of the radiohalogen within the molecule and the presence of lutetium in the chelate on biodistribution. On that basis, 211At-3-Lu was selected and evaluated in cell uptake and internalization studies, and biodistribution and PSMA-expressing (PSMA+) PC3 PIP tumor growth control were evaluated in experimental flank and metastatic (PC3-ML-Luc) models. A long-term (13-mo) toxicity study was performed for 211At-3-Lu, including tissue chemistries and histopathology. Results: The radiochemical yield of 211At-3-Lu was 17.8% ± 8.2%. Lead compound 211At-3-Lu demonstrated total uptake within PSMA+ PC3 PIP cells of 13.4 ± 0.5% of the input dose after 4 h of incubation, with little uptake in control cells. In SCID mice, 211At-3-Lu provided uptake that was 30.6 ± 4.8 percentage injected dose per gram (%ID/g) in PSMA+ PC3 PIP tumor at 1 h after injection, and this uptake decreased to 9.46 ± 0.96 %ID/g by 24 h. Tumor-to-salivary gland and tumor-to-kidney ratios were 129 ± 99 at 4 h and 130 ± 113 at 24 h, respectively. Deastatination was not significant (stomach, 0.34 ± 0.20 %ID/g at 4 h). Dose-dependent survival was demonstrated at higher doses (>1.48 MBq) in both flank and metastatic models. There was little off-target toxicity, as demonstrated by hematopoietic stability, unchanged tissue chemistries, weight gain rather than loss throughout treatment, and favorable histopathologic findings. Conclusion: Compound 211At-3-Lu or close analogs may provide limited and acceptable toxicity while retaining efficacy in management of prostate cancer.


Asunto(s)
Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Animales , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Lutecio/química , Masculino , Ratones , Ratones SCID , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Radiofármacos/química , Radiofármacos/uso terapéutico , Distribución Tisular
9.
Syst Biol ; 71(2): 396-409, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34289044

RESUMEN

Whole-genome comparisons based on average nucleotide identities (ANI) and the genome-to-genome distance calculator have risen to prominence in rapidly classifying prokaryotic taxa using whole-genome sequences. Some implementations have even been proposed as a new standard in species classification and have become a common technique for papers describing newly sequenced genomes. However, attempts to apply whole-genome divergence data to the delineation of higher taxonomic units and to phylogenetic inference have had difficulty matching those produced by more complex phylogenetic methods. We present a novel method for generating statistically supported phylogenies of archaeal and bacterial groups using a combined ANI and alignment fraction-based metric. For the test cases to which we applied the developed approach, we obtained results comparable with other methodologies up to at least the family level. The developed method uses nonparametric bootstrapping to gauge support for inferred groups. This method offers the opportunity to make use of whole-genome comparison data, that is already being generated, to quickly produce phylogenies including support for inferred groups. Additionally, the developed ANI methodology can assist the classification of higher taxonomic groups.[Average nucleotide identity (ANI); genome evolution; prokaryotic species delineation; taxonomy.].


Asunto(s)
Genoma Bacteriano , Nucleótidos , Filogenia , Células Procariotas , Análisis de Secuencia de ADN/métodos
10.
Int J Nanomedicine ; 16: 7297-7305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737567

RESUMEN

AIM: To develop an innovative 211At nanoplatform with high radiolabeling efficiency and low in vivo deastatination for future targeted alpha-particle therapy (TAT) to treat cancer. METHODS: Star-shaped gold nanoparticles, gold nanostars (GNS), were used as the platform for 211At radiolabeling. Radiolabeling efficiency under different reaction conditions was tested. Uptake in the thyroid and stomach after systemic administration was used to evaluate the in vivo stability of 211At-labeled GNS. A subcutaneous U87MG human glioma xenograft murine model was used to preliminarily evaluate the therapeutic efficacy of 211At-labeled GNS after intratumoral administration. RESULTS: The efficiency of labeling GNS with 211At was almost 100% using a simple and rapid synthesis process that was completed in only 1 min. In vitro stability test in serum showed that more than 99% of the 211At activity remained on the GNS after 24 h incubation at 37°C. In vivo biodistribution results showed low uptake in the thyroid (0.44-0.64%ID) and stomach (0.21-0.49%ID) between 0.5 and 21 h after intravenous injection, thus indicating excellent in vivo stability of 211At-labeled GNS. The preliminary therapeutic efficacy study demonstrated that 211At labeled GNS substantially reduced tumor growth (P < 0.001; two-way ANOVA) after intratumoral administration. CONCLUSION: The new 211At radiolabeling strategy based on GNS has the advantages of a simple process, high labeling efficiency, and minimal in vivo dissociation, making it an attractive potential platform for developing TAT agents that warrants further evaluation in future preclinical studies directed to evaluating prospects for clinical translation.


Asunto(s)
Hipertermia Inducida , Nanopartículas del Metal , Animales , Línea Celular Tumoral , Oro , Humanos , Ratones , Fototerapia , Distribución Tisular
11.
Inorg Chem ; 60(20): 15223-15232, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34606252

RESUMEN

The therapeutic potential of the Meitner-Auger- and conversion-electron emitting radionuclide 119Sb remains unexplored because of the difficulty of incorporating it into biologically targeted compounds. To address this challenge, we report the development of 119Sb production from electroplated tin cyclotron targets and its complexation by a novel trithiol chelate. The chelation reaction occurs in harsh solvent conditions even in the presence of large quantities of tin, which are necessary for production on small, low energy (16 MeV) cyclotrons. The 119Sb-trithiol complex has high stability and can be purified by HPLC. The third generation trithiol chelate and the analogous stable natSb-trithiol compound were synthesized and characterized, including by single-crystal X-ray diffraction analyses.

12.
Genome Biol Evol ; 13(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34255041

RESUMEN

Interest and controversy surrounding the evolutionary origins of extremely halophilic Archaea has increased in recent years, due to the discovery and characterization of the Nanohaloarchaea and the Methanonatronarchaeia. Initial attempts in explaining the evolutionary placement of the two new lineages in relation to the classical Halobacteria (also referred to as Haloarchaea) resulted in hypotheses that imply the new groups share a common ancestor with the Haloarchaea. However, more recent analyses have led to a shift: the Nanohaloarchaea have been largely accepted as being a member of the DPANN superphylum, outside of the euryarchaeota; whereas the Methanonatronarchaeia have been placed near the base of the Methanotecta (composed of the class II methanogens, the Halobacteriales, and Archaeoglobales). These opposing hypotheses have far-reaching implications on the concepts of convergent evolution (distantly related groups evolve similar strategies for survival), genome reduction, and gene transfer. In this work, we attempt to resolve these conflicts with phylogenetic and phylogenomic data. We provide a robust taxonomic sampling of Archaeal genomes that spans the Asgardarchaea, TACK Group, euryarchaeota, and the DPANN superphylum. In addition, we assembled draft genomes from seven new representatives of the Nanohaloarchaea from distinct geographic locations. Phylogenies derived from these data imply that the highly conserved ATP synthase catalytic/noncatalytic subunits of Nanohaloarchaea share a sisterhood relationship with the Haloarchaea. We also employ a novel gene family distance clustering strategy which shows this sisterhood relationship is not likely the result of a recent gene transfer. In addition, we present and evaluate data that argue for and against the monophyly of the DPANN superphylum, in particular, the inclusion of the Nanohaloarchaea in DPANN.


Asunto(s)
Genoma Arqueal , Halobacteriales , Archaea/genética , Halobacteriales/genética , Filogenia
13.
Nucl Med Biol ; 100-101: 12-23, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34144505

RESUMEN

The promising characteristics of the 7.2-h radiohalogen 211At have long been recognized; including having chemical properties suitable for labeling targeting vectors ranging from small organic molecules to proteins, and the emission of only one α-particle per decay, providing greater control over off-target effects. Unfortunately, the impact of 211At within the targeted α-particle therapy domain has been constrained by its limited availability. Paradoxically, the most commonly used production method - via the 209Bi(α,2n)211At reaction - utilizes a widely available natural material (bismuth) as the target and straightforward cyclotron irradiation methodology. On the other hand, the most significant impediment to widespread 211At availability is the need for an accelerator capable of generating ≥28 MeV α-particles with sufficient beam intensities to make clinically relevant levels of 211At. In this review, current methodologies for the production and purification of 211At - both by the direct production route noted above and via a 211Rn generator system - will be discussed. The capabilities of cyclotrons that currently produce 211At will be summarized and the characteristics of other accelerators that could be utilized for this purpose will be described. Finally, the logistics of networks, both academic and commercial, for facilitating 211At distribution to locations remote from production sites will be addressed.


Asunto(s)
Ciclotrones
14.
Bioconjug Chem ; 32(7): 1364-1373, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33423467

RESUMEN

Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV ß+, 26 h; 77As: 0.683 MeV ß-, 38.8 h) to form potential theranostic radiopharmaceuticals for positron emission tomography (PET) imaging and therapy. A trithiol(b)-(Ser)2-RM2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol(b)-(Ser)2-RM2 bioconjugate was radiolabeled with no-carrier-added 77As in over 95% radiochemical yield and was stable for over 48 h, and in vitro IC50 cell binding studies of [77As]As-trithiol(b)-(Ser)2-RM2 in PC-3 cells demonstrated high affinity for the gastrin-releasing peptide (GRP) receptor (low nanomolar range). Limited biodistribution studies in normal mice were performed with HPLC purified 77As-trithiol(b)-(Ser)2-RM2 demonstrating both pancreatic uptake and hepatobiliary clearance.


Asunto(s)
Arsénico/química , Quelantes/química , Radiofármacos/química , Compuestos de Sulfhidrilo/química , Animales , Quelantes/farmacocinética , Humanos , Concentración 50 Inhibidora , Ligandos , Masculino , Ratones , Células PC-3 , Tomografía de Emisión de Positrones/métodos , Medicina de Precisión , Radiofármacos/farmacocinética , Receptores de Bombesina/química , Distribución Tisular
15.
Nucl Med Biol ; 92: 171-183, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32448731

RESUMEN

INTRODUCTION: As a consequence of their small size, high stability and high affinity, single domain antibody fragments (sdAbs) are appealing targeting vectors for radiopharmaceutical development. With sdAbs binding to internalizing receptors like HER2, residualizing prosthetic agents can enhance tumor retention of radioiodine, which until now has been done with random labeling approaches. Herein we evaluate a site-specific strategy utilizing a radioiodinated, residualizing maleimido moiety and the anti-HER2 sdAb 5F7 bearing a GGC tail for conjugation. METHODS: Maleimidoethyl 3-(guanidinomethyl)-5-iodobenzoate ([131I]MEGMB) and its N-succinimidyl ester analogue, iso-[125I]SGMIB, were labeled by halodestannylation and conjugated with 5F7GGC and 5F7, respectively. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label experiments directly compared iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC with regard to internalization/residualization and affinity on HER2-expressing SKOV-3 ovarian carcinoma cells as well as biodistribution and metabolite distribution in athymic mice with subcutaneous SKOV-3 xenografts. RESULTS: [131I]MEGMIB-5F7GGC had an immunoreactivity of 81.3% and Kd = 0.94 ± 0.27 nM. Internalization assays demonstrated high intracellular trapping for both conjugates, For example, at 1 h, intracellular retention was 50.30 ± 3.36% for [131I]MEGMIB-5F7GGC and 55.95 ± 3.27% for iso-[125I]SGMIB-5F7, while higher retention was seen for iso-[125I]SGMIB-5F7 at later time points. Peak tumor uptake was similar for both conjugates (8.35 ± 2.66%ID/g and 8.43 ± 2.84%ID/g for iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC at 1 h, respectively); however, more rapid normal tissue clearance was seen for [131I]MEGMIB-5F7GGC, with a 2-fold higher tumor-to-kidney ratio and a 3-fold higher tumor-to-liver ratio compared with co-injected iso-[125I]SGMIB-5F7. Consisted with this, generation of labeled catabolites in the kidneys was higher for [131I]MEGMIB-5F7GGC. CONCLUSION: [131I]MEGMIB-5F7GGC offers similar tumor targeting as iso-[125I]SGMIB-5F7 but with generally lower normal tissue uptake. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE: The site specific nature of the [131I]MEGMIB reagent may facilitate clinical translation, particularly for sdAb with compromised affinity after random labeling.


Asunto(s)
Radioisótopos de Yodo , Receptor ErbB-2/inmunología , Anticuerpos de Dominio Único/metabolismo , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Femenino , Humanos , Ratones , Ratones Desnudos , Anticuerpos de Dominio Único/inmunología
16.
Microbiol Resour Announc ; 8(12)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30938699

RESUMEN

Isolated from Aran-Bidgol Lake in Iran, and reported here, Halorubrum ezzemoulense strain Fb21 represents the first complete genome from this archaeal species. Local recombination in this genome is in stark contrast to equidistant recombination events in bacteria. The genome's GC bias, however, points to a genome architecture and origin that resemble those of a bacterium. Its availability, genome signatures, and frequent intragenomic recombination mean that Fb21 presents an attractive model organism for this species.

17.
Appl Radiat Isot ; 143: 113-122, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30408634

RESUMEN

Positron-emitting 72As is the PET imaging counterpart for beta-emitting 77As. Its parent, no carrier added (n.c.a.) 72Se, was produced for a 72Se/72As generator by irradiating an enriched 7°Ge metal-graphite target via the 70Ge(α, 2 n)72Se reaction. Target dissolution used a fast, environmentally friendly method with 93% radioactivity recovery. Chromatographic parameters of the 72Se/72As generator were evaluated, the eluted n.c.a. 72As was characterized with a phantom imaging study, and the previously reported trithiol and aryl-dithiol ligand systems were radiolabeled with the separated n.c.a. 72As in high yield.


Asunto(s)
Arsénico/aislamiento & purificación , Radioisótopos/aislamiento & purificación , Generadores de Radionúclidos , Radiofármacos/aislamiento & purificación , Radioisótopos de Selenio/aislamiento & purificación , Germanio/química , Germanio/aislamiento & purificación , Germanio/efectos de la radiación , Humanos , Isótopos/química , Isótopos/aislamiento & purificación , Isótopos/efectos de la radiación , Fantasmas de Imagen , Tomografía de Emisión de Positrones , Ensayo de Unión Radioligante , Radiofármacos/síntesis química , Radiofármacos/química
18.
Nucl Med Biol ; 61: 1-10, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29571038

RESUMEN

INTRODUCTION: Trithiol chelates are suitable for labeling radioarsenic (72As: 2.49 MeV ß+, 26 h; 77As: 0.683 MeV ß-, 38.8 h) to form potential theranostic radiopharmaceuticals for PET imaging and therapy. To investigate the in vivo stability of trithiol chelates complexed with no carrier added (nca) radioarsenic, a bifunctional trithiol chelate was developed, and conjugated to bombesin(7-14)NH2 as a model peptide. METHODS: A trithiol-BBN(7-14)NH2 bioconjugate and its arsenic complex were synthesized and characterized. The trithiol-BBN(7-14)NH2 conjugate was radiolabeled with 77As, its in vitro stability assessed, and biodistribution studies were performed in CF-1 normal mice of free [77As]arsenate and 77As-trithiol- BBN(7-14)NH2. RESULTS: The trithiol-BBN(7-14)NH2 conjugate, its precursors and its As-trithiol-BBN(7-14)NH2 complex were fully characterized. Radiolabeling studies with nca 77As resulted in over 90% radiochemical yield of 77As-trithiol-BBN, which was stable for over 48 h. Biodistribution studies were performed with both free [77As]arsenate and Sep-Pak® purified 77As-trithiol-BBN(7-14)NH2. Compared to the fast renal clearance of free [77As]arsenate, 77As-trithiol-BBN(7-14)NH2 demonstrated increased retention with clearance mainly through the hepatobiliary system, consistent with the lipophilicity of the 77As-trithiol-BBN(714)NH2 complex. CONCLUSION: The combined in vitro stability of 77As-trithiol-BBN(7-14)NH2 and the biodistribution results demonstrate its high in vivo stability, making the trithiol a promising platform for developing radioarsenic-based theranostic radiopharmaceuticals.


Asunto(s)
Arsénico/química , Tomografía de Emisión de Positrones/métodos , Radioisótopos/química , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/uso terapéutico , Animales , Bombesina/química , Estabilidad de Medicamentos , Marcaje Isotópico , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Radioquímica , Compuestos de Sulfhidrilo/farmacocinética , Distribución Tisular
19.
Dalton Trans ; 46(42): 14677-14690, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-28951905

RESUMEN

The chemistry and radiochemistry of high specific activity radioisotopes of arsenic, rhenium and rhodium are reviewed with emphasis on University of Missouri activities over the past several decades, and includes recent results. The nuclear facilities at the University of Missouri (10 MW research reactor and 16.5 MeV GE PETtrace cyclotron) allow research and development into novel theranostic radionuclides. The production, separation, enriched target recovery, radiochemistry, and chelation chemistry of 72,77As, 186,188Re and 105Rh are discussed.


Asunto(s)
Radioisótopos/química , Radiofármacos/química , Arsénico/química , Modelos Moleculares , Conformación Molecular , Radioquímica , Renio/química , Rodio/química
20.
Inorg Chem ; 55(16): 8091-8, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27453472

RESUMEN

Arsenic-72 ((72)As) and (77)As have nuclear properties useful for positron emission tomography (PET) and radiotherapy, respectively. The thiophilic nature of arsenic led to the evaluation of dithioarylarsines for potential use in radiopharmaceuticals. Several dithioarylarsines were synthesized from their arylarsonic acids and dithiols and were fully characterized by NMR, ESI-MS, and X-ray crystallography. This chemistry was translated to the no-carrier-added (nca) (77)As level. Because arsenic was available at the nca nanomolar level only as [(77)As]arsenate, this required addition of an aryl group directly to the As to form the [(77)As]arylarsonic acid. The [(77)As]arsenate was reduced from (77)As (V) to (77)As (III), and a modified Bart reaction was used to incorporate the aryl ring onto the (77)As, which was followed by dithiol addition. Various modifications and optimizations resulted in 95% radiochemical yield of nca [(77)As]p-ethoxyphenyl-1,2-ethanedithiolatoarsine.


Asunto(s)
Arsenicales/química , Radiofármacos/química , Arsenicales/síntesis química , Técnicas de Química Sintética , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Estructura Molecular , Radiofármacos/síntesis química , Espectrometría de Masa por Ionización de Electrospray , Tolueno/análogos & derivados , Tolueno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...