Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Microbiol ; 14: 1166078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37234528

RESUMEN

In recent years, the poultry industry had been markedly affected by adenoviral diseases such as hydropericardium syndrome and inclusion body hepatitis caused by fowl adenovirus (FAdV), which have become increasingly prevalent in China. Shandong Province, China, is an important area for poultry breeding where various complex and diverse FAdV serotypes were isolated. However, the dominant strains and their pathogenic characteristics are not yet reported. Therefore, a pathogenicity and epidemiological survey of FAdV was conducted, showing that the local dominant serotypes of FAdV epidemics were FAdV-2, FAdV-4, FAdV-8b, and FAdV-11. Their mortality rates in the 17-day-old specific-pathogen-free (SPF) chicks ranged from 10 to 80%; clinical signs included mental depression, diarrhea, and wasting. The maximum duration of viral shedding was 14 days. The highest incidence in all infected groups was on days 5-9, and then gradual regression occurred thereafter. The most pronounced symptoms occurred in chicks infected with FAdV-4, including pericardial effusion and inclusion body hepatitis lesions. Our results add to the current epidemiological data on FAdV in poultry flocks in Shandong and elucidate the pathogenicity of dominant serotypes. This information may be important for FAdV vaccine development and comprehensive epidemic prevention and control.

2.
Neurochem Res ; 48(6): 1691-1706, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36592325

RESUMEN

Arterial baroreflex (ABR) dysfunction has previously been associated with neuroinflammation, the most common pathological feature of neurological disorders. However, the mechanisms mediating ABR dysfunction-induced neuroinflammation are not fully understood. In the present study, we investigated the role of platelet CD40 ligand (CD40L) in neuroinflammation in an in vivo model of ABR dysfunction, and microglia and astrocyte activation in vitro. ABR dysfunction was induced in Sprague‒Dawley rats by sinoaortic denervation (SAD). We used ELSA and immunofluorescence to assess the effect of platelet CD40L on glial cell polarization and the secretion of inflammatory factors. By flow cytometry, we found that rats subjected to SAD showed a high level of platelet microaggregation and upregulation of CD40L on the platelet surface. The promotion of platelet invasion and accumulation was also observed in the brain tissues of rats subjected to SAD. In the animal model and cultured N9 microglia/C6 astrocytoma cells, platelet CD40L overexpression promoted neuroinflammation and activated M1 microglia, A1 astrocytes, and the nuclear factor kappa B (NFκB) signaling pathway. These effects were partially blocked by inhibiting platelet activity with clopidogrel or inhibiting CD40L-mediated signaling. Our results suggest that during ABR dysfunction, CD40L signaling in platelets converts microglia to the M1 phenotype and astrocytes to the A1 phenotype, activating NFκB and resulting in neuroinflammation. Thus, our study provides a novel understanding of the pathogenesis of ABR dysfunction-induced neuroinflammation and indicates that targeting platelet CD40L is beneficial for treating central nervous system (CNS) disorders associated with ABR dysfunction.


Asunto(s)
Astrocitos , Barorreflejo , Plaquetas , Ligando de CD40 , Microglía , FN-kappa B , Enfermedades Neuroinflamatorias , Transducción de Señal , Animales , Masculino , Ratas , Astrocitos/metabolismo , Astrocitos/patología , Plaquetas/metabolismo , Plaquetas/patología , Ligando de CD40/metabolismo , Microglía/metabolismo , Microglía/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , FN-kappa B/metabolismo , Activación Plaquetaria , Ratas Sprague-Dawley
3.
Phys Chem Chem Phys ; 24(22): 14064-14071, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35640264

RESUMEN

Luminescent ns2 centers have shown great potential for applications as phosphors and scintillators. First-principles calculations based on density functional theory are performed to systematically analyze the luminescent centers of isolated and paired Bi3+(6s2) ions in layered LnOCl (Ln = Y, Gd, La) crystals. The spin-orbit coupling and orbital hybridization both show important effects on the luminescence properties. The luminescence of the isolated Bi ion is confirmed as the interconfigurational transition of 3P0,1 → 1S0. For the Bi pair, the adiabatic potential energy surfaces are calculated and the charge transfer excited state is the most stable, which accounts for the visible emission of a large Stokes shift. Furthermore, the electron-hole pair separation, absorption, excitonic state and emission of the material with fully-concentrated Bi3+, BiOCl, are discussed. This study shows that the first-principles calculations can serve as an effective tool for the photoluminescence analysis and engineering of materials activated with isolated, paired and even fully-concentrated ns2 ions.

4.
J Econ Entomol ; 115(1): 334-343, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35020924

RESUMEN

Juvenile hormone (JH) plays a key role in regulating insect reproductive processes. Methoprene-tolerant (Met), as a putative JH receptor, transduces JH signals by activating the transcription factor krüppel homolog 1 (Kr-h1). To understand the effects of Met and Kr-h1 genes on female reproduction of natural enemy insects, the Met and Kr-h1 were identified and analyzed from Harmonia axyridis Pallas (HmMet and HmKr-h1). The HmMet protein belonged to the bHLH-PAS family with bHLH domain, PAS domains, and PAC domain. HmMet mRNA was detected in all developmental stages, and the highest expression was found in the ovaries of female adults. The HmKr-h1 protein had eight C2H2-type zinc finger domains. HmKr-h1 mRNA was highly expressed from day 7 to day 9 of female adults. The tissue expression showed that HmKr-h1 was highly expressed in its wing, leg, and fat body. Knockdown of HmMet and HmKr-h1 substantially reduced the transcription of HmVg1 and HmVg2, inhibited yolk protein deposition, and reduced fecundity using RNA interference. In addition, the preoviposition period was significantly prolonged after dsMet-injection, but there was no significant difference after dsKr-h1-silencing. However, the effect on hatchability results was the opposite. Therefore, we infer that both HmMet and HmKr-h1 are involved in female reproduction of H. axyridis, and their specific functions are different in certain physiological processes. In several continents, H. axyridis are not only beneficial insects, but also invasive pests. This report will provide basis for applying or controlling the H. axyridis.


Asunto(s)
Escarabajos , Metopreno , Animales , Escarabajos/fisiología , Femenino , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Insectos , Hormonas Juveniles/farmacología , Metopreno/farmacología , Interferencia de ARN
5.
Inorg Chem ; 60(21): 16614-16625, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648277

RESUMEN

Rare-earth vanadates, niobates, and tantalates have shown self-activated and Bi3+-activated emissions. Their intrinsic emission has been attributed to self-trapped excitons (STEs), but the detailed information concerning the geometric and electronic structures of the excited states has remained unknown. Regarding the Bi3+ dopants in these hosts, the luminescence has been attributed to two different mechanisms, i.e., Bi3+↔ (V/Nb/Ta)5+ metal-to-metal charge transfer and interconfigurational (3P0,1 → 1S0) transition. Here, first-principles calculations using hybrid functionals are employed to resolve these issues. The STEs are shown to be composed of an electron localized on an individual vanadium, niobium, or tantalum ion and a hole localized on a single nearest-neighbor oxygen ion that is not shared by covalent complexes, and the bond length of the (V/Nb/Ta)-O bond with oxygen accommodating the hole is significantly elongated. The Bi3+-related emission is identified as the recombination of an exciton with a hole and an electron localized correspondingly at Bi3+ and (V/Nb/Ta)5+ ions, while the excitation is dominated by the 6s → 6p transition of Bi3+. Furthermore, Bi3+ has a hole trap level in all of the hosts considered with the trap levels in the vacuum-referred binding energy diagram being nearly flat but has an electron trap level only in rare-earth tantalates. Furthermore, the long-wavelength emission observed in niobates and tantalates is interpreted based on our calculations to be excitons bound to intrinsic defects. The insights gained in this work deepen our understanding of the STEs and form the basis for interpreting similar luminescence phenomena in other ternary closed-shell d0 transition-metal oxides. The clarification of Bi3+-related transitions and the analyses with the vacuum-referred binding energy diagram may find applications for the design and optimization of Bi3+-activated phosphors.

6.
Phys Rev Lett ; 127(3): 031102, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328784

RESUMEN

We report observations of gamma-ray emissions with energies in the 100-TeV energy region from the Cygnus region in our Galaxy. Two sources are significantly detected in the directions of the Cygnus OB1 and OB2 associations. Based on their positional coincidences, we associate one with a pulsar PSR J2032+4127 and the other mainly with a pulsar wind nebula PWN G75.2+0.1, with the pulsar moving away from its original birthplace situated around the centroid of the observed gamma-ray emission. This work would stimulate further studies of particle acceleration mechanisms at these gamma-ray sources.

7.
Phys Rev Lett ; 126(14): 141101, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33891464

RESUMEN

We report, for the first time, the long-awaited detection of diffuse gamma rays with energies between 100 TeV and 1 PeV in the Galactic disk. Particularly, all gamma rays above 398 TeV are observed apart from known TeV gamma-ray sources and compatible with expectations from the hadronic emission scenario in which gamma rays originate from the decay of π^{0}'s produced through the interaction of protons with the interstellar medium in the Galaxy. This is strong evidence that cosmic rays are accelerated beyond PeV energies in our Galaxy and spread over the Galactic disk.

8.
Inorg Chem ; 60(7): 4434-4446, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33735577

RESUMEN

Bismuth ion-doped phosphate crystals have shown rich luminescence phenomena. However, the complexity and variety of Bi3+-related transitions bring great challenges to the understanding of the underlying mechanisms, rendering it hard to rationally design new phosphors and optimize their performance. In this work, we perform first-principles calculations based on the generalized gradient approximation of density functional to obtain the excited state equilibrium geometric structures and then calculate the electronic structures for various Bi3+-related excited states in phosphates RPO4:Bi3+ (R = Y, Lu, La) by utilizing the hybrid density functional method. The experimentally measured excitation and emission features are well interpreted by our theoretical calculations. Specifically, we reveal that the emission in LaPO4:Bi3+ is of charge transfer nature, whereas the dominant emission in YPO4:Bi3+ or LuPO4:Bi3+ is the characteristic A band emission. Trapped holes above the valence band maximum due to intrinsic defects are deemed to play a role in the charge-transfer emission of LaPO4. Our calculations show that the excited state of the Bi3+ pair in YPO4 or LuPO4 is (Bi3+-Bi3+)*, rather than Bi2+-Bi4+. Such a Bi3+ pair contributes to the longer wavelength emission. Furthermore, our calculations on charge transition levels show that Bi3+ ions can act as electron and hole traps in RPO4 (R = Y, Lu, La). Our work indicates that first-principles calculations can be useful in exploring the diverse luminescence processes in Bi3+-doped inorganic insulators.

9.
Opt Express ; 28(19): 27223-27237, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988019

RESUMEN

A novel method is developed in this paper to characterize the band diagram and band modal fields of gyromagnetic photonic crystals that support topological one-way edge states. The proposed method is based on an integral equation formulation that utilizes the broadband Green's function (BBGF). The BBGF is a hybrid representation of the periodic lattice Green's function with imaginary extractions that has accelerated convergence and is suitable for broadband evaluations. The effects of the tensor permeability of the gyromagnetic scatterers are incorporated in a new formulation of surface integral equations (SIEs) with BBGF as the kernel that can be solved by the method of moments. The results are compared against Comsol simulations for various cases to demonstrate the accuracy and efficiency of the proposed method. Simulations results are illustrated and discussed for the modes of topological photonic crystals in relation to the physics of degeneracy, applied magnetic fields, and bandgaps.

10.
Phys Rev Lett ; 123(5): 051101, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491288

RESUMEN

We report on the highest energy photons from the Crab Nebula observed by the Tibet air shower array with the underground water-Cherenkov-type muon detector array. Based on the criterion of a muon number measured in an air shower, we successfully suppress 99.92% of the cosmic-ray background events with energies E>100 TeV. As a result, we observed 24 photonlike events with E>100 TeV against 5.5 background events, which corresponds to a 5.6σ statistical significance. This is the first detection of photons with E>100 TeV from an astrophysical source.

11.
Phys Rev Lett ; 120(3): 031101, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29400499

RESUMEN

We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54±0.21_{stat}±0.20_{syst} (1.62±0.15_{stat}±0.22_{syst}) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

12.
Nat Commun ; 8(1): 914, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030550

RESUMEN

Loss of protein and organelle quality control secondary to reduced autophagy is a hallmark of aging. However, the physiologic and molecular regulation of autophagy in long-lived organisms remains incompletely understood. Here we show that the Kruppel-like family of transcription factors are important regulators of autophagy and healthspan in C. elegans, and also modulate mammalian vascular age-associated phenotypes. Kruppel-like family of transcription factor deficiency attenuates autophagy and lifespan extension across mechanistically distinct longevity nematode models. Conversely, Kruppel-like family of transcription factor overexpression extends nematode lifespan in an autophagy-dependent manner. Furthermore, we show the mammalian vascular factor Kruppel-like family of transcription factor 4 has a conserved role in augmenting autophagy and improving vessel function in aged mice. Kruppel-like family of transcription factor 4 expression also decreases with age in human vascular endothelium. Thus, Kruppel-like family of transcription factors constitute a transcriptional regulatory point for the modulation of autophagy and longevity in C. elegans with conserved effects in the murine vasculature and potential implications for mammalian vascular aging.KLF family transcription factors (KLFs) regulate many cellular processes, including proliferation, survival and stress responses. Here, the authors position KLFs as important regulators of autophagy and lifespan in C. elegans, a role that may extend to the modulation of age-associated vascular phenotypes in mammals.


Asunto(s)
Autofagia , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Longevidad , Adulto , Anciano , Animales , Vasos Sanguíneos/fisiología , Caenorhabditis elegans , Estudios Transversales , Endotelio Vascular/metabolismo , Humanos , Factor 4 Similar a Kruppel , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Adulto Joven
14.
Cell ; 167(5): 1252-1263.e10, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863243

RESUMEN

Many animal tissues/cells are photosensitive, yet only two types of photoreceptors (i.e., opsins and cryptochromes) have been discovered in metazoans. The question arises as to whether unknown types of photoreceptors exist in the animal kingdom. LITE-1, a seven-transmembrane gustatory receptor (GR) homolog, mediates UV-light-induced avoidance behavior in C. elegans. However, it is not known whether LITE-1 functions as a chemoreceptor or photoreceptor. Here, we show that LITE-1 directly absorbs both UVA and UVB light with an extinction coefficient 10-100 times that of opsins and cryptochromes, indicating that LITE-1 is highly efficient in capturing photons. Unlike typical photoreceptors employing a prosthetic chromophore to capture photons, LITE-1 strictly depends on its protein conformation for photon absorption. We have further identified two tryptophan residues critical for LITE-1 function. Interestingly, unlike GPCRs, LITE-1 adopts a reversed membrane topology. Thus, LITE-1, a taste receptor homolog, represents a distinct type of photoreceptor in the animal kingdom.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Caenorhabditis elegans/efectos de la radiación , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/aislamiento & purificación , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Fotones , Conformación Proteica , Triptófano/metabolismo , Rayos Ultravioleta
15.
Oncotarget ; 7(13): 15410-20, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26919253

RESUMEN

Aging is characterized by progressive loss of cellular function and integrity. It has been thought to be driven by stochastic molecular damage. However, genetic and environmental maneuvers enhancing mitochondrial function or inhibiting glycolysis extend lifespan and promote healthy aging in many species. In post-fertile Caenorhabditis elegans, a progressive decline in phosphoenolpyruvate carboxykinase with age, and a reciprocal increase in pyruvate kinase shunt energy metabolism from oxidative metabolism to anaerobic glycolysis. This reduces the efficiency and total of energy generation. As a result, energy-dependent physical activity and other cellular functions decrease due to unmatched energy demand and supply. In return, decrease in physical activity accelerates this metabolic shift, forming a vicious cycle. This metabolic event is a determinant of aging, and is retarded by caloric restriction to counteract aging. In this review, we summarize these and other evidence supporting the idea that metabolic reprogramming is a driver of aging. We also suggest strategies to test this hypothesis.


Asunto(s)
Envejecimiento/metabolismo , Metabolismo Energético/fisiología , Envejecimiento/fisiología , Animales , Humanos
16.
Neurodegener Dis ; 16(3-4): 179-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26606044

RESUMEN

BACKGROUND: Levodopa-induced dyskinesia (LID) is a disabling complication of levodopa therapy in Parkinson's disease (PD) with no effective treatments. Fluctuations in levels of levodopa constitute a key risk factor of LID. There is a pressing need for the development of a simple animal model of LID. Several genetic and toxin-based models of PD in Caenorhabditis elegans have been described, which have advanced our understanding of PD pathophysiology. We aimed to study levodopa-induced changes in a Parkinson's disease model of C. elegans expressing human α-synuclein. METHODS: We exposed the α-synuclein C. elegans to levodopa in continuous and alternating fashions. Automated behavioral analysis was then used to quantify changes in motor activity. Confocal microscopy was used next to quantify changes in dopamine receptor distribution and expression in motor neurons of live C. elegans. RESULTS: Chronic exposure to levodopa led to hyperactivity of the α-synuclein C. elegans without meaningful increase in motor activity. There was also an increase in peripheral clustering and expression of dopamine receptors in motor neurons. Both of these changes were significantly higher with alternating, compared to continuous, exposure to levodopa. CONCLUSIONS: This is the first report of changes in motor and dopamine receptors induced by levodopa in C. elegans overexpressing human α-synuclein. We propose that these phenotypes represent a simple animal model of LID in C. elegans. Such a model holds the promise of enabling high-throughput screenings for potential therapeutic targets and drug candidates.


Asunto(s)
Antiparkinsonianos/toxicidad , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Trastornos Parkinsonianos/metabolismo , Receptores Dopaminérgicos/metabolismo , alfa-Sinucleína/metabolismo , Actigrafía , Animales , Animales Modificados Genéticamente , Antiparkinsonianos/farmacología , Caenorhabditis elegans , Discinesia Inducida por Medicamentos/patología , Humanos , Levodopa/farmacología , Microscopía Confocal , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Reconocimiento de Normas Patrones Automatizadas , alfa-Sinucleína/genética
17.
J Biol Chem ; 291(3): 1307-19, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26631730

RESUMEN

Aging involves progressive loss of cellular function and integrity, presumably caused by accumulated stochastic damage to cells. Alterations in energy metabolism contribute to aging, but how energy metabolism changes with age, how these changes affect aging, and whether they can be modified to modulate aging remain unclear. In locomotory muscle of post-fertile Caenorhabditis elegans, we identified a progressive decrease in cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), a longevity-associated metabolic enzyme, and a reciprocal increase in glycolytic pyruvate kinase (PK) that were necessary and sufficient to limit lifespan. Decline in PEPCK-C with age also led to loss of cellular function and integrity including muscle activity, and cellular senescence. Genetic and pharmacologic interventions of PEPCK-C, muscle activity, and AMPK signaling demonstrate that declines in PEPCK-C and muscle function with age interacted to limit reproductive life and lifespan via disrupted energy homeostasis. Quantifications of metabolic flux show that reciprocal changes in PEPCK-C and PK with age shunted energy metabolism toward glycolysis, reducing mitochondrial bioenergetics. Last, calorie restriction countered changes in PEPCK-C and PK with age to elicit anti-aging effects via TOR inhibition. Thus, a programmed metabolic event involving PEPCK-C and PK is a determinant of aging that can be modified to modulate aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Glucólisis , Dinámicas Mitocondriales , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Piruvato Quinasa/metabolismo , Envejecimiento , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Restricción Calórica , Citosol/enzimología , Citosol/metabolismo , Citosol/ultraestructura , Metabolismo Energético , Mutación , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/genética , Interferencia de ARN , Análisis de Supervivencia
18.
J Proteome Res ; 14(3): 1483-94, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25686393

RESUMEN

Little is known regarding how the synthesis and degradation of individual proteins change during the life of an organism. Such knowledge is vital to understanding the aging process. To fill this knowledge gap, we monitored newly synthesized proteins on a proteome scale in Caenorhabditis elegans over time during adulthood using a stable-isotope labeling by amino acids in cell culture (SILAC)-based label-chase approach. For most proteins, the rate of appearance of newly synthesized protein was high during the first 5 days of adulthood, slowed down between the fifth and the 11th days, and then increased again after the 11th day. However, the magnitude of appearance rate differed significantly from protein to protein. For example, the appearance of newly synthesized protein was fast for proteins involved in embryonic development, transcription regulation, and lipid binding/transport, with >70% of these proteins newly synthesized by day 5 of adulthood, whereas it was slow for proteins involved in cellular assembly and motility, such as actin and myosin, with <70% of these proteins newly synthesized even on day 16. The late-life increase of newly synthesized protein was especially high for ribosomal proteins and ATP synthases. We also investigated the effect of RNAi-mediated knockdown of the rpl-9 (ribosomal protein), atp-3 (ATP synthase), and ril-1 (RNAi-induced longevity-1) genes and found that inhibiting the expression of atp-3 and ril-1 beginning in late adulthood is still effective to extend the life span of C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animales , Caenorhabditis elegans/fisiología , Longevidad
19.
Anal Biochem ; 472: 30-6, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25461480

RESUMEN

High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.


Asunto(s)
Animales Modificados Genéticamente , Caenorhabditis elegans , Expresión Génica , Marcaje Isotópico , Rodopsina , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bovinos , Escherichia coli/genética , Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rodopsina/biosíntesis , Rodopsina/química , Rodopsina/genética
20.
Mol Cell Biol ; 34(13): 2450-63, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24752898

RESUMEN

Adaptation to changes in extracellular tonicity is essential for cell survival. However, severe or chronic hyperosmotic stress induces apoptosis, which involves cytochrome c (Cyt c) release from mitochondria and subsequent apoptosome formation. Here, we show that angiogenin-induced accumulation of tRNA halves (or tiRNAs) is accompanied by increased survival in hyperosmotically stressed mouse embryonic fibroblasts. Treatment of cells with angiogenin inhibits stress-induced formation of the apoptosome and increases the interaction of small RNAs with released Cyt c in a ribonucleoprotein (Cyt c-RNP) complex. Next-generation sequencing of RNA isolated from the Cyt c-RNP complex reveals that 20 tiRNAs are highly enriched in the Cyt c-RNP complex. Preferred components of this complex are 5' and 3' tiRNAs of specific isodecoders within a family of isoacceptors. We also demonstrate that Cyt c binds tiRNAs in vitro, and the pool of Cyt c-interacting RNAs binds tighter than individual tiRNAs. Finally, we show that angiogenin treatment of primary cortical neurons exposed to hyperosmotic stress also decreases apoptosis. Our findings reveal a connection between angiogenin-generated tiRNAs and cell survival in response to hyperosmotic stress and suggest a novel cellular complex involving Cyt c and tiRNAs that inhibits apoptosome formation and activity.


Asunto(s)
Apoptosis/genética , Apoptosomas/biosíntesis , Citocromos c/metabolismo , División del ARN , ARN de Transferencia/metabolismo , Ribonucleasa Pancreática/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosomas/antagonistas & inhibidores , Factor Apoptótico 1 Activador de Proteasas/genética , Secuencia de Bases , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Fibroblastos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Presión Osmótica , Ribonucleasa Pancreática/farmacología , Ribonucleoproteínas/genética , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...