Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 916
Filtrar
1.
Int J Biol Macromol ; : 133003, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851607

RESUMEN

Enzymatic hydrolysis is important for lignocellulosic biomass conversion into fermentable sugars. However, the nonproductive adsorption of enzyme on lignin was major hinderance for the enzymatic hydrolysis efficiency. In this study, non-productive adsorption mechanism of cellulase component cellobiohydrolase (CBH) onto lignin was specific investigated. Research revealed that the adsorption behavior of CBH on eucalyptus alkali lignin (EuA) was affected by reaction conditions. As study on the adsorption kinetic, it was indicated that the adsorption cellulose binding domain (CBD) of CBH onto EuA well fitted with Langmuir adsorption model and pseudo second-order adsorption kinetics model. And the tyrosine site related to the adsorption of CBD onto lignin was proved by the fluorescence and UV spectra analysis. The results of this work provide a theoretical guidance to understanding the nonproductive adsorption mechanism and building method to reduce the adsorption of cellulase on the lignin.

2.
J Hazard Mater ; 474: 134787, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823101

RESUMEN

The developmental toxicity effects of neonicotinoid pesticides such as clothianidin have not been fully explored in agricultural applications. This is particularly noteworthy because such pesticides significantly impact the survival rates of invertebrates, with arthropod larvae being particularly vulnerable. This study aimed to address this research gap by specifically investigating the toxicological effects of clothianidin on the developmental stages of the larvae of the economically important aquaculture species Penaeus vannamei. In these experiments, shrimp eggs were exposed to seawater containing different concentrations of clothianidin beginning at N1, and each phase was observed and analyzed to determine its toxic impact on larval development. These results revealed that clothianidin induces an increase in deformity rates and triggers abnormal cell apoptosis. It also significantly reduced survival rates and markedly decreased body length and heart rate in the later stages of larval development (P3). Transcriptomic analysis revealed disruptions in larval DNA integrity, protein synthesis, and signal transduction caused by clothianidin. To survive prolonged exposure, larvae may attempt to maintain their viability by repairing cell structures and enhancing signal transduction mechanisms. This study offers the first empirical evidence of the toxicity of clothianidin to arthropod larvae, underscoring the impact of environmental pollution on aquatic health.

3.
Acta Cardiol ; : 1-13, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771356

RESUMEN

BACKGROUND: Inflammation plays a pivotal role in the pathogenesis of heart failure (HF). This study was aimed to the potential association between complete blood cell count (CBC)-derived inflammatory biomarkers and HF. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) 2009-2018 were utilised. We evaluated the associations between HF and five systemic inflammation markers derived from CBC: systemic immune-inflammation index (SII), systemic inflammatory response index (SIRI), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR). Demographic characteristics, physical examinations, and laboratory data were systematically collected for comparative analysis between HF and non-HF individuals. Fitted smoothing curves and threshold effect analysis delineated the relationship. In addition, Spearman correlation and subgroup analyses were further conducted. RESULTS: A total of 26,021 participants were categorised into HF (n = 858) and non-HF (n = 25,163) groups. After adjusting for confounding variables, SIRI, NLR, and MLR had significant positive correlations with the risk of HF. Participants in the highest quarter groups of SIRI, NLR, and MLR showed a increased risk of developing HF compared to those in the lowest quarter group. Furthermore, subgroup and sensitivity analyses indicated that SIRI, NLR, and MLR had a stronger correlation to HF (all p < 0.05). Smoothing curve fitting highlighted a nonlinear relationship between CBC-derived inflammatory biomarkers and HF. CONCLUSIONS: Our results illustrated a significant association between elevated levels of SIRI, NLR, and MLR and an increased risk of HF. SIRI, NLR, and MLR could potentially serve as systemic inflammation hazard markers for HF.

4.
Appl Microbiol Biotechnol ; 108(1): 350, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809284

RESUMEN

The African swine fever virus (ASFV) has the ability to infect pigs and cause a highly contagious acute fever that can result in a mortality rate as high as 100%. Due to the viral epidemic, the pig industry worldwide has suffered significant financial setbacks. The absence of a proven vaccine for ASFV necessitates the development of a sensitive and reliable serological diagnostic method, enabling laboratories to effectively and expeditiously detect ASFV infection. In this study, four strains of monoclonal antibodies (mAbs) against p72, namely, 5A1, 4C4, 8A9, and 5E10, were generated through recombinant expression of p72, the main capsid protein of ASFV, and immunized mice with it. Epitope localization was performed by truncated overlapping polypeptides. The results indicate that 5A1 and 4C4 recognized the amino acid 20-39 aa, 8A9 and 5E10 are recognized at 263-282 aa, which is consistent with the reported 265-280 aa epitopes. Conserved analysis revealed 20-39 aa is a high conservation of the epitopes in the ASFV genotypes. Moreover, a blocking ELISA assay for detection ASFV antibody based on 4C4 monoclonal antibody was developed and assessed. The receiver-operating characteristic (ROC) was performed to identify the best threshold value using 87 negative and 67 positive samples. The established test exhibited an area under the curve (AUC) of 0.9997, with a 95% confidence interval ranging from 99.87 to 100%. Furthermore, the test achieved a diagnostic sensitivity of 100% (with a 95% confidence interval of 95.72 to 100%) and a specificity of 98.51% (with a 95% confidence interval of 92.02 to 99.92%) when the threshold was set at 41.97%. The inter- and intra-batch coefficient of variation were below 10%, demonstrating the exceptional repeatability of the method. This method can detect the positive standard serum at a dilution as high as 1:512. Subsequently, an exceptional blocking ELISA assay was established with high diagnostic sensitivity and specificity, providing a novel tool for detecting ASFV antibodies. KEY POINTS: • Four strains of ASFV monoclonal antibodies against p72 were prepared and their epitopes were identified. • Blocking ELISA method was established based on monoclonal antibody 4C4 with an identified conservative epitope. • The established blocking ELISA method has a good effect on the detection of ASFV antibody.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Anticuerpos Monoclonales , Anticuerpos Antivirales , Proteínas de la Cápside , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Animales , Anticuerpos Monoclonales/inmunología , Virus de la Fiebre Porcina Africana/inmunología , Virus de la Fiebre Porcina Africana/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Ratones , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Ratones Endogámicos BALB C , Sensibilidad y Especificidad , Epítopos/inmunología
5.
Food Funct ; 15(10): 5496-5509, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38690869

RESUMEN

Postbiotics have been proposed as clinically viable alternatives to probiotics, addressing limitations and safety concerns associated with probiotic use. However, direct comparisons between the functional differences and health benefits of probiotics and postbiotics remain scarce. This study compared directly the desensitization effect of probiotics and postbiotics derived from Lactiplantibacillus plantarum strain DPUL-F232 in the whey protein-induced allergic rat model. The results demonstrate that administering both live and heat killed F232 significantly alleviated allergy symptoms, reduced intestinal inflammation, and decreased serum antibody and histamine levels in rats. Both forms of F232 were effective in regulating the Th1/Th2 balance, promoting the secretion of the regulatory cytokine IL-10, inhibiting mast cell degranulation and restoring the integrity of the intestinal barrier through the upregulation of tight junction proteins. Considering the enhanced stability and reduced safety concerns of postbiotics compared to probiotics, alongside their ability to regulate allergic reactions, we suggest that postbiotics may serve as viable substitutes for probiotics in managing food allergies and potentially other diseases.


Asunto(s)
Hipersensibilidad a los Alimentos , Probióticos , Proteína de Suero de Leche , Animales , Proteína de Suero de Leche/farmacología , Ratas , Probióticos/farmacología , Lactobacillus plantarum , Ratas Sprague-Dawley , Mucosa Intestinal/inmunología , Masculino , Femenino , Calor , Humanos
6.
Commun Biol ; 7(1): 399, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565940

RESUMEN

The occurrence of chemoresistance is an inescapable obstacle affecting the clinical efficacy of cisplatin in gastric cancer (GC). Exploring the regulatory mechanism of cisplatin resistance will help to provide potential effective targets for improving the prognosis of gastric cancer patients. Here, we find that FAM120A is upregulated in GC tissues and higher in cisplatin-resistant GC tissues, and its high expression is positively correlated with the poor outcome of GC patients. Functional studies indicate that FAM120A confers chemoresistance to GC cells by inhibiting ferroptosis. Mechanically, METTL3-induced m6A modification and YTHDC1-induced stability of FAM120A mRNA enhance FAM120A expression. FAM120A inhibits ferroptosis by binding SLC7A11 mRNA and enhancing its stability. FAM120A deficiency enhances cisplatin sensitivity by promoting ferroptosis in vivo. These results reveal the function of FAM120A in chemotherapy tolerance and targeting FAM120A is an effective strategy to alleviate cisplatin resistance in GC.


Asunto(s)
Ferroptosis , Neoplasias Gástricas , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Ferroptosis/genética , Metiltransferasas , ARN Mensajero , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética
7.
Chemosphere ; 358: 142150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679174

RESUMEN

Cycloxaprid, a new neonicotinoid pesticide, poses ecological risks, particularly in aquatic environments, due to its unique action and environmental dispersal. This study investigated the ecotoxicological effects of various concentrations of cycloxaprid on Penaeus vannamei over 28 days. High cycloxaprid levels significantly altered shrimp physiology, as shown by changes in the hepatosomatic index and fattening. Indicators of oxidative stress, such as increased serum hemocyanin, respiratory burst, and nitric oxide, as well as decreased phenol oxidase activity, were observed. Additionally, elevated activities of lactate dehydrogenase, succinate dehydrogenase, and isocitrate dehydrogenase indicated disrupted energy metabolism in the hepatopancreas. Notably, analyses of the nervous system revealed marked disturbances in neural signaling, as evidenced by elevated acetylcholine, octopamine, and acetylcholinesterase levels. Transcriptomic analysis highlighted significant effects on gene expression and metabolic processes in the hepatopancreas and nervous system. This study demonstrated that cycloxaprid disrupts neural signaling and oxidative balance in P. vannamei, potentially affecting its growth, and provides key insights into its biochemical and transcriptomic toxicity in aquatic systems.


Asunto(s)
Penaeidae , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Penaeidae/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neonicotinoides/toxicidad , Piridinas/toxicidad , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Insecticidas/toxicidad , Compuestos Heterocíclicos con 3 Anillos
8.
Int J Biol Macromol ; 263(Pt 2): 130414, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428768

RESUMEN

With rapid industrialization and urbanization, numerous wastewater contains elevated concentration of Hg(II), and its concentration must be reduced to the discharge limit, so as not to cause serious pollution to the environment. In this paper, a modified chitosan adsorbent material, AMT-DMTD-CS (CS = chitosan, AMT = 2-amino-5-mercapto-1,3,4-thiadiazole, DMTD = 1,3,4-thiadiazole-2,5-dithiol) was prepared. FT-IR, XPS, elemental analysis, and FE-SEM confirmed that AMT and DMTD were successfully grafted covalently onto CS, with BET analysis showing a specific surface area of 105.55 m2/g for AMT-DMTD-CS. Adsorption study suggests that the optimal pH environment for AMT-DMTD-CS to adsorb Hg(II) is 4.0, and the saturated uptake capacity reaches 687.17 mg/g at 318 K, even after eight regenerations, the removal is still maintained at 80.06 %. Moreover, the adsorption behavior is in perfect agreement with the pseudo-second order kinetic model and the Langmuir isotherm model. In addition, AMT-DMTD-CS shows quite favorable selectivity for Hg(II) in a variety of co-existing metal ions. According to the FT-IR and XPS analysis of AMT-DMTD-CS-Hg(II), the synergistic complexation of -OH, -NH2, -NH, CN, CS and -SH to Hg(II) is considered as the main reason that leading to the elevated adsorption capacity.


Asunto(s)
Quitosano , Mercurio , Tiazoles , Contaminantes Químicos del Agua , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Cinética , Concentración de Iones de Hidrógeno
9.
Antonie Van Leeuwenhoek ; 117(1): 48, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429402

RESUMEN

A gram-stain-positive, aerobic, rod-shaped bacterial strain capable of producing siderophores, named YIM B08730T, was isolated from a soil sample collected from Wumeng Mountain National Nature Reserve, Zhaotong City, Yunnan Province. Growth occurred at 10-45 °C (optimum, 35-40 â„ƒ), pH 7.0-9.0 (optimum, 7.0) and in the presence of 0-5 % (w/v) NaCl (optimum, 0-1 %, w/v). A comparative analysis of the 16S rRNA gene sequence (1558 bp) of strain YIM B08730T showed the highest similarity to Solibacillus isronensis JCM 13838T (96.2 %), followed by Solibacillus silvestris DSM 12223T (96.0 %) and Solibacillus kalamii ISSFR-015T (95.4 %). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine and one unidentified lipid. The main respiratory quinone of strain YIM B08730T was menaquinone 7 (MK-7). The major fatty acids were iso-C15:0 and C16:1ω7c alcohol. The digital DNA-DNA hybridization and average nucleotide identity values between strain YIM B08730T and the reference strain S. isronensis JCM 13838T were 24.8 % and 81.2 %, respectively. The G + C content of the genomic DNA was 37.1 mol%. The genome of the novel strain contained genes associated with the production of siderophores, and it also revealed other functional gene clusters involved in plant growth promotion and soil bioremediation. Based on these phenotypic, chemotaxonomic and phylogenetic analyses, strain YIM B08730T is considered to be a novel species of the genus Solibacillus, for which the name Solibacillus ferritrahens sp. nov. is proposed. The type strain is YIM B08730T (= NBRC 116268T = CGMCC 1.60169T).


Asunto(s)
Bacterias , Fosfolípidos , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , China , Bacterias/genética , Suelo
10.
Elife ; 122024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536726

RESUMEN

Mechanism underlying the metabolic benefit of intermittent fasting remains largely unknown. Here, we reported that intermittent fasting promoted interleukin-22 (IL-22) production by type 3 innate lymphoid cells (ILC3s) and subsequent beigeing of subcutaneous white adipose tissue. Adoptive transfer of intestinal ILC3s increased beigeing of white adipose tissue in diet-induced-obese mice. Exogenous IL-22 significantly increased the beigeing of subcutaneous white adipose tissue. Deficiency of IL-22 receptor (IL-22R) attenuated the beigeing induced by intermittent fasting. Single-cell sequencing of sorted intestinal immune cells revealed that intermittent fasting increased aryl hydrocarbon receptor signaling in ILC3s. Analysis of cell-cell ligand receptor interactions indicated that intermittent fasting may stimulate the interaction of ILC3s with dendritic cells and macrophages. These results establish the role of intestinal ILC3s in beigeing of white adipose tissue, suggesting that ILC3/IL-22/IL-22R axis contributes to the metabolic benefit of intermittent fasting.


Obesity refers to a condition where a person has excessive fat accumulation, which can have negative impacts on their health. Managing obesity has typically relied on reducing energy intake and increasing energy use through diets and exercise. For example, intermittent fasting is a diet strategy involving periods of time in a day or week where a person does not eat any food. Research has shown that intermittent fasting may improve the metabolism and increase energy use by enhancing a process known as "beigeing" of white fat tissue. In this process, white fat cells or their precursor cells differentiate into beige fat cells, which can consume excess energy by burning fat. Consequently, understanding how beigeing of white fat cells is activated in intermittent fasting may reveal a promising strategy for tackling obesity and metabolic diseases. Immune cells found in the gut known as innate lymphoid cells (ILCs) may play a role in the metabolic benefits from intermittent fasting. However, the roles of ILCs are complex: some types of ILCs can promote obesity, while others show metabolic benefits through their release of proteins like IL-17 and IL-22, which can help the body to metabolise glucose. To find out if these immune cells play a role in intermittent fasting, Chen, Sun et al. used diet-induced obese mice that had to fast every other day. Intermittent fasting was found to cause a form of ILCs (ILC3s) to release IL-22, which resulted in beigeing of white fat cells in obese mice. Single-cell sequencing techniques of gut immune cells further revealed that intermittent fasting increased forms of signalling in ILC3s and caused ILC3s to interact with other immune cells, such as dendritic cells and macrophages. The findings demonstrate how intermittent fasting causes beigeing of white adipose tissue through ILC3s, revealing mechanisms underpinning the metabolic benefits found from intermittent fasting. More research into this process may help identify new targets for treating obesity.


Asunto(s)
Interleucina-22 , Linfocitos , Ratones , Animales , Linfocitos/metabolismo , Inmunidad Innata , Ayuno Intermitente , Tejido Adiposo Blanco/metabolismo
11.
Biomed Chromatogr ; 38(6): e5853, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38486466

RESUMEN

Qingxuan Zhike granules (QXZKG), a traditional Chinese patent medication, has shown therapeutic potential against acute lung injury (ALI). However, the precise mechanism underlying its lung-protective effects requires further investigation. In this study, integrated network pharmacology, molecular docking, and lipidomics were used to elucidate QXZKG's regulatory effect on lipid metabolism in lipopolysaccharide-induced ALI. Animal experiments were conducted to substantiate the efficacy of QXZKG in reducing pro-inflammatory cytokines and mitigating pulmonary pathology. Network pharmacology analysis identified 145 active compounds that directly targeted 119 primary targets of QXZKG against ALI. Gene Ontology function analysis emphasized the roles of lipid metabolism and mitogen-activated protein kinase (MAPK) cascade as crucial biological processes. The MAPK1 protein exhibited promising affinities for naringenin, luteolin, and kaempferol. Lipidomic analysis revealed that 12 lipids showed significant restoration following QXZKG treatment (p < 0.05, FC >1.2 or <0.83). Specifically, DG 38:4, DG 40:7, PC O-40:8, TG 18:1_18:3_22:6, PI 18:2_20:4, FA 16:3, FA 20:3, FA 20:4, FA 22:5, and FA 24:5 were downregulated, while Cer 18:0;2O/24:0 and SM 36:1;2O/34:5 were upregulated in the QXZKG versus model groups. This study enhances our understanding of the active compounds and targets of QXZKG, as well as the potential of lipid metabolism in the treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Metabolismo de los Lípidos , Lipidómica , Lipopolisacáridos , Simulación del Acoplamiento Molecular , Farmacología en Red , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Lipidómica/métodos , Ratones , Pulmón/efectos de los fármacos , Pulmón/metabolismo
12.
Gut Microbes ; 16(1): 2316932, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356294

RESUMEN

Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.


Asunto(s)
Microbioma Gastrointestinal , Salmonella typhimurium , Animales , Salmonella typhimurium/metabolismo , Proteína Estafilocócica A/genética , Proteína Estafilocócica A/metabolismo , Serogrupo , Dinámicas Mitocondriales , Proteínas Bacterianas/metabolismo , Macrófagos/metabolismo , Proliferación Celular
13.
Bioorg Chem ; 145: 107219, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377821

RESUMEN

SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias/tratamiento farmacológico , Metilación
14.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38356236

RESUMEN

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Asunto(s)
Dermatitis Atópica , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/metabolismo , Dinitroclorobenceno/toxicidad , Dinitroclorobenceno/uso terapéutico , Proteínas Quinasas Activadas por AMP , Dióxido de Carbono/toxicidad , Dióxido de Carbono/uso terapéutico , Factor de Necrosis Tumoral alfa , Citocinas/metabolismo , Macrófagos/metabolismo , Antiinflamatorios/uso terapéutico , Interleucina-12/toxicidad , Interleucina-12/uso terapéutico , Lípidos , Ratones Endogámicos BALB C , Piel
15.
Am Heart J ; 271: 1-11, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38336159

RESUMEN

BACKGROUND: Although previous risk models exist for advanced heart failure with reduced ejection fraction (HFrEF), few integrate invasive hemodynamics or support missing data. This study developed and validated a heart failure (HF) hemodynamic risk and phenotyping score for HFrEF, using Machine Learning (ML). METHODS: Prior to modeling, patients in training and validation HF cohorts were assigned to 1 of 5 risk categories based on the composite endpoint of death, left ventricular assist device (LVAD) implantation or transplantation (DeLvTx), and rehospitalization in 6 months of follow-up using unsupervised clustering. The goal of our novel interpretable ML modeling approach, which is robust to missing data, was to predict this risk category (1, 2, 3, 4, or 5) using either invasive hemodynamics alone or a rich and inclusive feature set that included noninvasive hemodynamics (all features). The models were trained using the ESCAPE trial and validated using 4 advanced HF patient cohorts collected from previous trials, then compared with traditional ML models. Prediction accuracy for each of these 5 categories was determined separately for each risk category to generate 5 areas under the curve (AUCs, or C-statistics) for belonging to risk category 1, 2, 3, 4, or 5, respectively. RESULTS: Across all outcomes, our models performed well for predicting the risk category for each patient. Accuracies of 5 separate models predicting a patient's risk category ranged from 0.896 +/- 0.074 to 0.969 +/- 0.081 for the invasive hemodynamics feature set and 0.858 +/- 0.067 to 0.997 +/- 0.070 for the all features feature set. CONCLUSION: Novel interpretable ML models predicted risk categories with a high degree of accuracy. This approach offers a new paradigm for risk stratification that differs from prediction of a binary outcome. Prospective clinical evaluation of this approach is indicated to determine utility for selecting the best treatment approach for patients based on risk and prognosis.


Asunto(s)
Insuficiencia Cardíaca , Hemodinámica , Aprendizaje Automático , Fenotipo , Volumen Sistólico , Humanos , Insuficiencia Cardíaca/fisiopatología , Masculino , Femenino , Medición de Riesgo/métodos , Persona de Mediana Edad , Hemodinámica/fisiología , Volumen Sistólico/fisiología , Corazón Auxiliar , Anciano , Pronóstico
16.
Vaccine ; 42(5): 1136-1144, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38267332

RESUMEN

BACKGROUND: Pneumococcal Diseases (PDs) remains a serious public health problem around the world and in China. Pneumococcal vaccination is the most cost-effective measure to prevent PDs. In 2021, the government of Weifang City, Shandong Province, China introduced a free dose of domestic 13-valent Pneumococcal Conjugate Vaccine (PCV 13) to vaccinate registered children aged 6 months-2 years. This study aimed to evaluate the vaccination rate of PCV13 in children aged under 5 years before and after the vaccination program to provide evidences for further improving the prevention and control strategy for PDs. METHODS: We collected data from the children's vaccination information management system in Weifang City and analyzed the PCV13 vaccination coverage and characteristics in all vaccination clinics of Weifang City for children aged under 5 years. We compared the differences in vaccination rates by gender, birth year, manufacturer, and county before and after innovative immunization strategy. RESULTS: Among the included 593,784 children aged under 5 years, the PCV13 vaccination rate in Weifang was generally low before the innovative immunization strategy. Urban children had a higher PCV13 coverage than rural children (P < 0.001), and parents tended to vaccinate their children with imported PCV13.The full vaccination rate for domestic and imported PCV13 was 0.67 % and 1.70 %, respectively. After the vaccination program, the PCV13 coverage of children increased significantly in all counties within Weifang City (P < 0.001), especially for children above 12 months of age. Most parents preferred to vaccinate their children with domestic PCV13, and the full vaccination rate of domestic and imported PCV13 was 6.59 % and 0.16 %, respectively. CONCLUSIONS: The vaccination rate of PCV13 in children is still much lower than the global average, posting a severe health challenge that needs to be addressed thoroughly. To improve the prevention and control strategy for PDs, it is recommended to continue to explore other relevant incentives based on the innovative immunization strategy. Furthermore, it is also recommended that China should incorporate PCV13 into the National Immunization Programs (NIP) as soon as possible.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Niño , Humanos , Lactante , Preescolar , Estudios Retrospectivos , Cobertura de Vacunación , Vacunación , Infecciones Neumocócicas/prevención & control , Vacunas Neumococicas , China , Vacunas Conjugadas
18.
Int J Biol Macromol ; 254(Pt 3): 127724, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898252

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

19.
Intern Emerg Med ; 19(1): 49-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37796371

RESUMEN

This study aims to develop and validate a prognostic nomogram that accurately predicts the short-term survival rate of cirrhotic patients with acute kidney damage (AKI) upon ICU admission. For this purpose, we examined the admission data of 3060 cirrhosis patients with AKI from 2008 to 2019 in the MIMIC-IV database. All included patients were randomly assigned to derivation and validation cohorts in a 7:3 ratio. The derivation cohort used the least absolute shrinkage and selection operator (LASSO) regression model to identify independent predictors of AKI. A prognostic nomogram was constructed via multivariate logistic regression analysis in the derivation cohort and subsequently verified in the validation cohort. Nomogram's discrimination, calibration, and clinical utility were evaluated using the C-index, calibration plot, and decision curve analysis (DCA). A total of 2138 patients were enrolled in the derivation cohort, with a median follow-up period of 15 days, a median survival time of 41 days, and a death rate of 568 patients (26.6%). The cumulative survival rates at 15 and 30 days were 75.8% and 57.5%, respectively. The results of the multivariate analysis indicated that advanced AKI stage, use of vasoactive drugs, advanced age, lower levels of ALB, lower mean sBp, longer INR, and longer PT were all independent risk factors that significantly influenced the all-cause mortality of cirrhosis patients with AKI (all p < 0.01). The C-indices for the derivation and the validation cohorts were 0.821 (95% CI 0.800-0.842) and 0.831 (95% CI 0.810-0.852), respectively. The model's calibration plot demonstrated high consistency between predicted and actual probabilities. Furthermore, the DCA showed that the nomogram was clinically valuable. Therefore, the developed and internally validated prognostic nomogram exhibited favorable discrimination, calibration, and clinical utility in forecasting the 15-day and 30-day survival rates of cirrhosis patients with AKI upon admission to the ICU.


Asunto(s)
Lesión Renal Aguda , Nomogramas , Humanos , Pronóstico , Cirrosis Hepática/complicaciones , Unidades de Cuidados Intensivos
20.
Plant Physiol ; 194(3): 1764-1778, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38035763

RESUMEN

Clubroot, caused by the soil-borne protist pathogen Plasmodiophora brassicae, is one of the most devastating diseases of Brassica oil and vegetable crops worldwide. Understanding the pathogen infection strategy is crucial for the development of disease control. However, because of its obligate biotrophic nature, the molecular mechanism by which this pathogen promotes infection remains largely unknown. P. brassicae E3 ubiquitin ligase 2 (PbE3-2) is a Really Interesting New Gene (RING)-type E3 ubiquitin ligase in P. brassicae with E3 ligase activity in vitro. Yeast (Saccharomyces cerevisiae) invertase assay and apoplast washing fluid extraction showed that PbE3-2 harbors a functional signal peptide. Overexpression of PbE3-2 in Arabidopsis (Arabidopsis thaliana) resulted in higher susceptibility to P. brassicae and decreases in chitin-triggered reactive oxygen species burst and expression of marker genes in salicylic acid signaling. PbE3-2 interacted with and ubiquitinated host cysteine protease RESPONSIVE TO DEHYDRATION 21A (RD21A) in vitro and in vivo. Mutant plants deficient in RD21A exhibited similar susceptibility and compromised immune responses as in PbE3-2 overexpression plants. We show that PbE3-2, which targets RD21A, is an important virulence factor for P. brassicae. Two other secretory RING-type E3 ubiquitin ligases in P. brassicae performed the same function as PbE3-2 and ubiquitinated RD21A. This study reveals a substantial virulence functional role of protist E3 ubiquitin ligases and demonstrates a mechanism by which protist E3 ubiquitin ligases degrade host immune-associated cysteine proteases to impede host immunity.


Asunto(s)
Arabidopsis , Proteasas de Cisteína , Arabidopsis/genética , Proteasas de Cisteína/genética , Inmunidad de la Planta/genética , Saccharomyces cerevisiae , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...