Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(16): 7133-7143, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38587400

RESUMEN

Reactions of mineral surfaces with dissolved metal ions at far-from-equilibrium conditions can deviate significantly from those in near-equilibrium systems due to steep concentration gradients, ion-surface interactions, and reactant transport effects that can lead to emergent behavior. We explored the effect of dissolved Pb2+ on the dissolution rate and topographic evolution of calcite (104) surfaces under far-from-equilibrium acidic conditions (pH 3.7) in a confined single-pass laminar-flow geometry. Operando measurements by digital holographic microscopy were conducted over a range of Pb2+ concentrations ([Pb2+] = 0 to 5 × 10-2 M) and flow velocities (v = 1.67-53.3 mm s-1). Calcite (104) surface dissolution rates decreased with increasing [Pb2+]. The inhibition of dissolution and the emergence of unique topographic features, including micropyramids, variable etch pit shapes, and larger scale topographic patterns, became increasingly apparent at [Pb2+] ≥ 5 × 10-3 M. A better understanding of such dynamic reactivity could be crucial for constructing accurate models of geochemical transport in aqueous carbonate systems.

2.
Adv Mater ; : e2310672, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38659412

RESUMEN

The internal crystallinity of calcite is investigated for samples synthesized using two approaches: precipitation from solution and the ammonium carbonate diffusion method. Scanning electron microscopy (SEM) analyses reveal that the calcite products precipitated using both approaches have a well-defined rhombohedron shape, consistent with the euhedral crystal habit of the mineral. The internal structure of these calcite crystals is characterized using Bragg coherent diffraction imaging (BCDI) to determine the 3D electron density and the atomic displacement field. BCDI reconstructions for crystals synthesized using the ammonium carbonate diffusion approach have the expected euhedral shape, with internal strain fields and few internal defects. In contrast, the crystals synthesized by precipitation from solution have very complex external shapes and defective internal structures, presenting null electron density regions and pronounced displacement field distributions. These heterogeneities are interpreted as multiple crystalline domains, created by a nonclassical crystallization mechanism, where smaller nanoparticles coalescence into the final euhedral particles. The combined use of SEM, X-ray diffraction (XRD), and BCDI allows for structurally differentiating calcite crystals grown with different approaches, opening new opportunities to understand how grain boundaries and internal defects alter calcite reactivity.

3.
J Phys Chem Lett ; 15(13): 3493-3501, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38517335

RESUMEN

Mitigating uranium transport in groundwater is imperative for ensuring access to clean water across the globe. Here, in situ resonant anomalous X-ray reflectivity is used to investigate the adsorption of uranyl on alumina (012) in acidic aqueous solutions, representing typical UVI concentrations of contaminated water near mining sites. The analyses reveal that UVI adsorbs at two distinct heights of 2.4-3.2 and 5-5.3 Å from the surface terminal oxygens. The former is interpreted as the mixture of inner-sphere and outer-sphere complexes that adsorb closest to the surface. The latter is interpreted as an outer-sphere complex that shares one equatorial H2O with the terminal surface oxygen. With increasing pH, we observe an increasing prevalence of these outer-sphere complexes, indicating the enhanced role of the hydrogen bond that stabilizes adsorbed uranyl species. The presented work provides a molecular-scale understanding of sorption of uranyl on Al-based-oxide surfaces that has implications for environmental chemistry and materials science.

4.
Chemphyschem ; 24(22): e202300742, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37989712

RESUMEN

The front cover artwork is provided by Argonne National Laboratory. The image shows the arrangement of correlated cations and anions at a charged solid surface in contact with highly concentrated electrolyte solutions. Read the full text of the Research Article at 10.1002/cphc.202300545.

5.
Sci Rep ; 13(1): 16891, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803020

RESUMEN

Enhanced oil recovery (EOR) from carbonates is obtained by injection of controlled ionic strength brines containing "active ions" (e.g., SO42-, Mg2+, Ca2+). It is generally believed that this occurs through the interaction of the active ions at the carbonate-brine interface (e.g., within a thin brine layer separating the petroleum and the carbonate phases). Here, in-situ observations show how one active ion, SO42-, alters behavior at the carbonate-petroleum interface. Displacement of petroleum from initially oil-wet carbonate rocks using brines with variable SO4 concentrations systematically changes oil recovery, in situ contact angles, and connectivity of the oil phase, confirming that the active ion alters interactions at the oil/brine/carbonate interface, as expected. Measurements of model calcite-fluid interfaces show that there is no measurable sorption of SO4 to carbonate-brine interfaces but reveals that the carbonate-petroleum interface is altered by previous exposure to SO4-containing brines. These results suggest that EOR in carbonates is controlled indirectly by active ions. We propose that this may be due to a reduced oleophilicity of the carbonate caused by chemical complexation between the active ion and petroleum's acidic and basic functional groups. This mechanism explains how both anions and cations act as active ions for EOR in carbonates.

6.
Chemphyschem ; 24(22): e202300545, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37632699

RESUMEN

Classical electric double layer (EDL) models have been widely used to describe ion distributions at charged solid-water interfaces in dilute electrolytes. However, the chemistry of EDLs remains poorly constrained at high ionic strength where ion-ion correlations control non-classical behavior such as overcharging, i. e., the accumulation of counter-ions in amounts exceeding the substrate's surface charge. Here, we provide direct experimental observations of correlated cation and anion distributions adsorbed at the muscovite (001)-aqueous electrolyte interface as a function of dissolved RbBr concentration ([RbBr]=0.01-5.8 M) using resonant anomalous X-ray reflectivity. Our results show alternating cation-anion layers in the EDL when [RbBr]≳100 mM, whose spatial extension (i. e., ~20 Šfrom the surface) far exceeds the dimension of the classical Stern layer. Comparison to RbCl and RbI electrolytes indicates that these behaviors are sensitive to the choice of co-ion. This new in-depth molecular-scale understanding of the EDL structure during transition from classical to non-classical regimes supports the development of realistic EDL models for technologies operating at high salinity such as water purification applications or modern electrochemical storage.

7.
Environ Sci Technol ; 57(8): 3104-3113, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36781166

RESUMEN

Mining wastes or combustion ash are materials of high carbon sequestration potential but are also known for their toxicity in terms of heavy metal content. To utilize such waste materials for engineered carbon mineralization purposes, there is a need to investigate the fate and mobility of toxic metals. This is a study of the coprecipitation of metals with calcium carbonate for environmental heavy metal mitigation. The study also examines the stability of precipitated phases under environmentally relevant acid conditions. For a wide range of cadmium (Cd) and zinc (Zn) concentrations (10 to 5000 mg/L), induced coprecipitation led to greater than 99% uptake from water. The calcium carbonate phases were found to contain amounts as high as 9.9 wt % (Cd) and 17 wt % (Zn), as determined by novel synchrotron techniques, including X-ray fluorescence element mapping and three-dimensional (3D) nanotransmission X-ray microscopy (TXM). TXM imaging revealed first-of-a-kind observations of chemical gradients and internal nanoporosity within particles. These observations provided new insights into the mechanisms leading to the retention of coprecipitated heavy metals during the dissolution of calcite in acidic (pH 4) solutions. These observations highlight the feasibility of utilizing carbonate coprecipitation as an engineered approach to the durable sequestration of toxic metals.


Asunto(s)
Metales Pesados , Zinc , Cadmio , Metales Pesados/química , Carbonatos , Carbonato de Calcio
8.
Environ Sci Technol ; 57(1): 266-276, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36562683

RESUMEN

Interactions of heavy metals with charged mineral surfaces control their mobility in the environment. Here, we investigate the adsorption of Y(III) onto the orthoclase (001) basal plane, the former as a representative of rare earth elements and an analogue of trivalent actinides and the latter as a representative of naturally abundant K-feldspar minerals. We apply in situ high-resolution X-ray reflectivity to determine the sorption capacity and molecular distribution of adsorbed Y species as a function of the Y3+ concentration, [Y3+], at pH 7 and 5. With [Y3+] ≥ 1 mM at pH 7, we observe an inner-sphere (IS) sorption complex at a distance of ∼1.5 Å from the surface and an outer-sphere (OS) complex at 3-4 Å. Based on the adsorption height of the IS complex, a bidentate, binuclear binding mode, in which Y3+ binds to two terminal oxygens, is proposed. In contrast, mostly OS sorption is observed at pH 5. The observed maximum Y coverage is ∼1.3 Y3+/AUC (AUC: area of the unit cell = 111.4 Å2) for all the investigated pH values and Y concentrations, which is in the expected range based on the estimated surface charge of orthoclase (001).


Asunto(s)
Metales Pesados , Silicatos , Rayos X , Minerales , Adsorción
9.
Environ Sci Technol ; 56(23): 16801-16810, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36346833

RESUMEN

The interactions of heavy metals with minerals influence the mobility and bioavailability of toxic elements in natural aqueous environments. The sorption of heavy metals on covalently bonded minerals is generally well described by surface complexation models (SCMs). However, understanding sorption on sparingly soluble minerals is challenging because of the dynamically evolving chemistry of sorbent surfaces. The interpretation can be even more complicated when multiple metal ions compete for sorption. In the present study, we observed synergistically enhanced uptake of lead and selenate on the barite (001) surface through two sorption mechanisms: lattice incorporation that dominates at lower coverages and two-dimensional monolayer growth that dominates at higher coverages. We also observed a systematic increase in the sorption affinity with increasing co-sorbed ion coverages, different from the assumption of invariant binding constants for individual adsorption processes in classical SCMs. Computational simulations showed thermodynamically favorable co-incorporation of lead and selenate by simultaneously substituting for barium and sulfate in neighboring sites, resulting in the formation of molecular clusters that locally match the net dimension of the substrate lattice. These results emphasize the importance of ion-ion interactions at mineral-water interfaces that control the fate and transport of contaminants in the environment.


Asunto(s)
Sulfato de Bario , Metales Pesados , Ácido Selénico , Agua/química , Adsorción , Minerales/química , Sulfatos
10.
ACS Nano ; 16(4): 5384-5392, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35357130

RESUMEN

In-plane tungsten oxide nanostructures, including hexagonally patterned cylinders and holes in a matrix, were fabricated via sequential infiltration synthesis (SIS) on self-assembled block copolymer templates. Using the tailored morphology and porosity of these model electrodes with in situ grazing incidence small-angle X-ray scattering, the intrinsic structural change of nanoscale active materials during the conversion reaction of WO3 + 6Li ↔ W + 3Li2O was investigated at controlled electrochemical conditions. Reversible electrode volume expansion and contraction was observed during lithiation and delithiation cycles, respectively. The potential where the electrode's thickness expansion started was ∼1.6 V, which is close to the thermodynamically expected one for the conversion reaction of WO3 with lithium (1.65 V). The temporal evolution of the electrode volume at constant electrode potentials revealed high overpotential for bulk lithiation and slow conversion reaction kinetics, despite the tailored porosity of the SIS electrodes. Oxide cylinders showed a smaller overall electrode thickness change, likely due to unconstrained lateral volume change, as compared to a matrix with holes. On the other hand, better connectivity and guided volume change of the latter electrode morphology provided improved cycling stability. In addition, heterogeneity in an electrode, from internal pores and density gradients, was found to aggravate the fragmentation of the electrode during the conversion reaction. Insights into oxide conversion reaction kinetics and the relationship between electrode mesostructure and cycling behavior obtained from this study can help guide the more rational design of conversion electrodes for high-performing batteries.

11.
ACS Appl Mater Interfaces ; 14(5): 7428-7439, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35089684

RESUMEN

Intermixing of atomic species at the electrode-electrolyte boundaries can impact the properties of the interfaces in solid-state batteries. Herein, this work uses first-principles statistical mechanics along with experimental characterization to understand intermixing at the electrode-electrolyte interface. For the model presented in this work, lithium manganese oxide (LiMn2O4, LMO) and lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) are employed as the cathode and electrolyte, respectively. The results of the computational work show that Ti-Mn intermixing at the interface is significant at synthesis temperatures. The experimental results in this work find that, at some critical temperatures between 600 and 700 °C for material preparation, the interface of LLTO-LMO becomes blurred. Calculations predict that the interface is unstable with regard to Ti-Mn intermixing starting at 0 K, suggesting that the critical temperature found in the experiment is related to kinetics. The work overall suggests that, in designing a solid-state battery, the fundamental reactions such as intermixing need to be considered.

12.
J Phys Chem C Nanomater Interfaces ; 126(38): 16447-16460, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37881644

RESUMEN

The stability of adsorbed water films on mineral surfaces has far-reaching implications in the Earth, environmental, and materials sciences. Here, we use the basal plane of phlogopite mica, an atomically smooth surface of a natural mineral, to investigate water film structure and stability as a function of two features that modulate surface hydrophilicity: the type of adsorbed counterions (Na, K, and Cs) and the substitution of structural OH groups by F atoms. We use molecular dynamics simulations combined with in situ high-resolution X-ray reflectivity to examine surface hydration over a range of water loadings, from the adsorption of isolated water molecules to the formation of clusters and films. We identify four regimes characterized by distinct adsorption energetics and different sensitivities to cation type and mineral fluorination: from 0 to 0.5 monolayer film thickness, the hydration of adsorbed ions; from 0.5 to 1 monolayer, the hydration of uncharged regions of the siloxane surface; from 1 to 1.5 monolayer, the attachment of isolated water molecules on the surface of the first monolayer; and for >1.5 monolayer, the formation of an incipient electrical double layer at the mineral-water interface.

13.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353907

RESUMEN

Classical electrical double layer (EDL) models are foundational to the representation of atomistic structure and reactivity at charged interfaces. An important limitation to these models is their dependence on a mean-field approximation that is strictly valid for dilute aqueous solutions. Theoretical efforts to overcome this limitation are severely impeded by the lack of visualization of the structure over a wide range of ion concentration. Here, we report the salinity-dependent evolution of EDL structure at negatively charged mica-water interfaces, revealing transition from the Langmuir-type charge compensation in dilute salt solutions to nonclassical charge overscreening in highly concentrated solutions. The EDL structure in this overcharging regime is characterized by the development of both lateral positional correlation between adsorbed ions and vertical layering of alternating cations and anions reminiscent of the structures of strongly correlated ionic liquids. These EDL ions can spontaneously grow into nanocrystalline nuclei of ionic compounds at threshold ion concentrations that are significantly lower than the bulk solubility limit. These results shed light on the impact of ion cooperativity that drives heterogeneous nonclassical behaviors of the EDL in high-salinity conditions.

14.
ACS Appl Mater Interfaces ; 13(36): 43597-43605, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34464097

RESUMEN

MXenes are a large family of two-dimensional materials that are attractive for energy storage due to their high-rate charging capabilities as well as for electrochemical actuators, water purification, and many other technologies. Ion intercalation during electrochemically driven charge and discharge processes is the fundamental process associated with MXene functionality, which we have characterized using in situ and operando X-ray reflectivity (XRR). Experiments performed at the Advanced Photon Source at Argonne National Laboratory monitored the changes in the structure of a Ti3C2 MXene film on a platinum current collector as a function of static applied potential between 0.3 and -0.7 V vs Ag/AgCl in an aqueous 0.1 M Li2SO4 electrolyte. Negative potential sweeps lead to a contraction of 1.2 Å in the interlayer spacing and a loss of electron density between the layers, likely due to Li+ ion insertion and water removal. The change in lattice spacing includes a continuous variation vs potential as well as an additional discrete contraction that occurs near -0.35 V that has the characteristics of a first-order transition. The continuous change in the MXene interlayer spacing is associated with the capacitive charge, while the discrete change in structure correlated to the weak feature in the cyclic voltammogram at -0.35 V can be interpreted as either a pseudocapacitive charging process or a potential-dependent change in capacity.

15.
Sci Rep ; 10(1): 20507, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239747

RESUMEN

Wettability control of carbonates is a central concept for enhanced petroleum recovery, but a mechanistic understanding of the associated molecular-scale chemical processes remains unclear. We directly probe the interface of calcium carbonate (calcite) with natural petroleum oil, synthetic petroleum analogues, and aqueous brines to understand the molecular scale behavior at this interface. The calcite-petroleum interface structure is similar whether or not calcite was previously exposed to an aqueous brine, and is characterized by an adsorbed interfacial layer, significant structural changes within the calcite surface, and increased surface roughness. No evidence for an often-assumed thin-brine wetting layer at the calcite-petroleum interface is observed. These features differ from those observed at the calcite-brine interface, and for parallel measurements using model synthetic petroleum mixtures (consisting of representative components, including dodecane, toluene, and asphaltene). Changes to the interface after petroleum displacement by aqueous brines are also discussed.

16.
Acta Crystallogr A Found Adv ; 76(Pt 4): 458-467, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32608361

RESUMEN

The use of coherent X-ray reflectivity to recover interfacial topography is described using model calculations for a 1D interface. The results reveal that the illuminated topography can be recovered directly from the measured reflected intensities. This is achieved through an analysis of the Patterson function, the Fourier transform of the scattering intensity (as a function of lateral momentum transfer, Q//, at fixed vertical momentum transfer, Qz). Specifically, a second-order Patterson function is defined that reveals the discrete set of separations and contrast factors (i.e. the product of changes in the effective scattering factor) associated with discontinuities in the effective interfacial topography. It is shown that the topography is significantly overdetermined by the measurements, and an algorithm is described that recovers the actual topography through a deterministic sorting of this information.

17.
J Phys Chem Lett ; 11(10): 4029-4035, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32290658

RESUMEN

Ion adsorption at solid-water interfaces is commonly described by interactions between specific surface sites and adsorbed ions in classical models. However, energetic contributions from non-site-specific ion-ion interactions have been less well understood. Here, we report nonclassical behaviors observed during competitive adsorption between Sr2+ and Na+/Rb+ at the negatively charged muscovite mica (001)-water interface, revealing apparent controls of adsorbed ion speciation over the interfacial reactivity. In the absence of competing cations, Sr2+ adsorbs in approximately equivalent proportions of inner-sphere and outer-sphere complexes, whereas it adsorbs predominantly as an outer-sphere complex in the presence of Na+/Rb+. This transformation of adsorbed Sr2+ speciation significantly decreases its adsorption strength, as indicated by the ∼15-fold shift in the Sr2+ adsorption edge concentration, compared to that calculated from a classical Langmuir isotherm model developed on the basis of site-specific interactions. These observations highlight the importance of non-site-specific interactions in controlling the energetics of chemical reactions at the charged interface.

18.
ACS Nano ; 13(7): 7825-7832, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31117380

RESUMEN

Oxide conversion reactions are known to have substantially higher specific capacities than intercalation materials used in Li-ion batteries, but universally suffer from large overpotentials associated with the formation of interfaces between the resulting nanoscale metal and Li2O products. Here we use the interfacial sensitivity of operando X-ray reflectivity to visualize the structural evolution of ultrathin NiO electrodes and their interfaces during conversion. We observe two additional reactions prior to the well-known bulk, three-dimensional conversion occurring at 0.6 V: an accumulation of lithium at the buried metal/oxide interface (at 2.2 V) followed by interfacial lithiation of the buried NiO/Ni interface at the theoretical potential for conversion (at 1.9 V). To understand the mechanisms for bulk and interfacial lithiation, we calculate interfacial energies using density functional theory to build a potential-dependent nucleation model for conversion. These calculations show that the additional space charge layer of lithium is a crucial component for reducing energy barriers for conversion in NiO.

19.
Phys Chem Chem Phys ; 21(17): 8897-8905, 2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-30982834

RESUMEN

Observations of the initial lithiation of NiO electrodes demonstrate how to seed conversion reactions using interfaces in a thin film Ni/NiO bilayer architecture. Operando X-ray reflectivity (XRR) reveals that structural changes in a NiO film begin at potentials near the theoretical reduction potential (1.8-2.0 V) with detectable lithiation of both the buried Ni/NiO interface and the outer NiO surface that occur prior to the reaction of the NiO film. This initial conversion reaction is most pronounced in ultrathin NiO films (∼20 Å) with only small changes to the NiO film surface for thicker films (∼67 Å). The limited reactivity of thicker NiO films probed using operando grazing incidence small-angle X-ray scattering (GISAXS) shows the growth of nanoparticles at the electrode/electrolyte interface during initial lithium ion insertion, with a 16-20 Å average radius. Ex situ X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning transmission electron microscopy/electron energy loss spectroscopy (STEM/EELS) confirm our conclusions about the morphological changes accompanying initial stage of lithiation in these conversion reaction electrodes. The present study reveals the interconnected challenges of solid-solid transitions, overpotentials, interfacial nucleation and kinetics, and transition metal dissolution in conversion-type electrodes that are critical for their use as electrodes in lithium-ion batteries.

20.
Nat Commun ; 10(1): 703, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741943

RESUMEN

Oxidation of magnetite (Fe3O4) has broad implications in geochemistry, environmental science and materials science. Spatially resolving strain fields and defect evolution during oxidation of magnetite provides further insight into its reaction mechanisms. Here we show that the morphology and internal strain distributions within individual nano-sized (~400 nm) magnetite crystals can be visualized using Bragg coherent diffractive imaging (BCDI). Oxidative dissolution in acidic solutions leads to increases in the magnitude and heterogeneity of internal strains. This heterogeneous strain likely results from lattice distortion caused by Fe(II) diffusion that leads to the observed domains of increasing compressive and tensile strains. In contrast, strain evolution is less pronounced during magnetite oxidation at elevated temperature in air. These results demonstrate that oxidative dissolution of magnetite can induce a rich array of strain and defect structures, which could be an important factor that contributes to the high reactivity observed on magnetite particles in aqueous environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...