Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Physiol Meas ; 45(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38772394

RESUMEN

Objective.Temperature plays a crucial role in influencing the spatiotemporal dynamics of the heart. Electrical instabilities due to specific thermal conditions typically lead to early period-doubling bifurcations and beat-to-beat alternans. These pro-arrhythmic phenomena manifest in voltage and calcium traces, resulting in compromised contractile behaviors. In such intricate scenario, dual optical mapping technique was used to uncover unexplored multi-scale and nonlinear couplings, essential for early detection and understanding of cardiac arrhythmia.Approach.We propose a methodological analysis of synchronized voltage-calcium signals for detecting alternans, restitution curves, and spatiotemporal alternans patterns under different thermal conditions, based on integral features calculation. To validate our approach, we conducted a cross-species investigation involving rabbit and guinea pig epicardial ventricular surfaces and human endocardial tissue under pacing-down protocols.Main results.We show that the proposed integral feature, as the area under the curve, could be an easily applicable indicator that may enhance the predictability of the onset and progression of cardiac alternans. Insights into spatiotemporal correlation analysis of characteristic spatial lengths across different heart species were further provided.Significance.Exploring cross-species thermoelectric features contributes to understanding temperature-dependent proarrhythmic regimes and their implications on coupled spatiotemporal voltage-calcium dynamics. The findings provide preliminary insights and potential strategies for enhancing arrhythmia detection and treatment.


Asunto(s)
Calcio , Análisis Espacio-Temporal , Animales , Cobayas , Conejos , Calcio/metabolismo , Humanos , Temperatura , Corazón/fisiología , Fenómenos Electrofisiológicos , Imagen Óptica , Especificidad de la Especie
2.
Artículo en Inglés | MEDLINE | ID: mdl-38083080

RESUMEN

Cardiac electrical dynamics show complex space-time instabilities, like period-doubling bifurcation and beat-to-beat alternans, known to occur as pro-arrhythmic phenomena and linked to membrane voltage and intracellular calcium kinetics. Besides, cellular ionic dynamics are critically affected by temperature oscillations, further enhancing the complexity of such arrhythmias precursors that lead to irregular cardiac contraction. In this complex scenario, fluorescence dual optical mapping techniques allow the unveiling of nonlinear and multi-scale couplings. In this contribution, we propose a novel methodological analysis of synchronous dual voltage-calcium traces obtained from whole rabbit hearts for (i) detecting alternans onset and evolution, (ii) characterizing novel restitution curves, and (iii) defining spatio-temporal alternans patterns at four thermal states. We validate our approach against well-accepted analyses considering complete pacing-down restitution protocols. The proposed methodology computes integral features, e.g., area under the curve, suggesting that a novel, easy-to-use indicator, may advance predictability on alternans onset and evolution, further providing insights into spatio-temporal cardiac analyses.Clinical Relevance- This work introduces new methods for the early detection of cardiac alternans onset and development as precursors of arrhythmias and fibrillation at different temperatures.


Asunto(s)
Calcio , Corazón , Animales , Conejos , Potenciales de Acción , Corazón/diagnóstico por imagen , Arritmias Cardíacas/diagnóstico , Cinética
3.
Europace ; 25(12)2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-38006390

RESUMEN

AIMS: The mechanisms of transition from regular rhythms to ventricular fibrillation (VF) are poorly understood. The concordant to discordant repolarization alternans pathway is extensively studied; however, despite its theoretical centrality, cannot guide ablation. We hypothesize that complex repolarization dynamics, i.e. oscillations in the repolarization phase of action potentials with periods over two of classic alternans, is a marker of electrically unstable substrate, and ablation of these areas has a stabilizing effect and may reduce the risk of VF. To prove the existence of higher-order periodicities in human hearts. METHODS AND RESULTS: We performed optical mapping of explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Signals recorded from the right ventricle endocardial surface were processed to detect global and local repolarization dynamics during rapid pacing. A statistically significant global 1:4 peak was seen in three of six hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of Periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. CONCLUSION: We present evidence of complex higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex vivo human hearts. We infer that the oscillation of the calcium cycling machinery is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability and may provide targets for substrate-based ablation of VF.


Asunto(s)
Ventrículos Cardíacos , Corazón , Humanos , Arritmias Cardíacas , Fibrilación Ventricular/cirugía , Potenciales de Acción/fisiología
4.
medRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662394

RESUMEN

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., periods 4, 6, 8,...) are expected but have minimal experimental evidence. Methods: We studied explanted human hearts obtained from recipients of heart transplantation at the time of surgery. Optical mapping of the transmembrane potential was performed after staining the hearts with voltage-sensitive fluorescent dyes. Hearts were stimulated at an increasing rate until VF was induced. Signals recorded from the right ventricle endocardial surface prior to induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results were correlated to the underlying electrophysiological characteristics as quantified by restitution curves and conduction velocity. Results: A prominent and statistically significant global 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local (pixel-wise) analysis revealed the spatially heterogeneous distribution of periods 4, 6, and 8, with the regional presence of periods greater than two in all the hearts. There was no significant correlation between the underlying restitution properties and the period of each pixel. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts. We infer from the independence of the period to the underlying restitution properties that the oscillation of the excitation-contraction coupling and calcium cycling mechanisms is the primary mechanism of higher-order dynamics. These higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation and may provide targets for substrate-based ablation of VF.

5.
ArXiv ; 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37461415

RESUMEN

The reconstruction of electrical excitation patterns through the unobserved depth of the tissue is essential to realizing the potential of computational models in cardiac medicine. We have utilized experimental optical-mapping recordings of cardiac electrical excitation on the epicardial and endocardial surfaces of a canine ventricle as observations directing a local ensemble transform Kalman Filter (LETKF) data assimilation scheme. We demonstrate that the inclusion of explicit information about the stimulation protocol can marginally improve the confidence of the ensemble reconstruction and the reliability of the assimilation over time. Likewise, we consider the efficacy of stochastic modeling additions to the assimilation scheme in the context of experimentally derived observation sets. Approximation error is addressed at both the observation and modeling stages, through the uncertainty of observations and the specification of the model used in the assimilation ensemble. We find that perturbative modifications to the observations have marginal to deleterious effects on the accuracy and robustness of the state reconstruction. Further, we find that incorporating additional information from the observations into the model itself (in the case of stimulus and stochastic currents) has a marginal improvement on the reconstruction accuracy over a fully autonomous model, while complicating the model itself and thus introducing potential for new types of model error. That the inclusion of explicit modeling information has negligible to negative effects on the reconstruction implies the need for new avenues for optimization of data assimilation schemes applied to cardiac electrical excitation.

6.
Phys Rev E ; 107(5-1): 054407, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37329030

RESUMEN

Discordant alternans, the spatially out-of-phase alternation of the durations of propagating action potentials in the heart, has been linked to the onset of fibrillation, a major cardiac rhythm disorder. The sizes of the regions, or domains, within which these alternations are synchronized are critical in this link. However, computer models employing standard gap junction-based coupling between cells have been unable to reproduce simultaneously the small domain sizes and rapid action potential propagation speeds seen in experiments. Here we use computational methods to show that rapid wave speeds and small domain sizes are possible when a more detailed model of intercellular coupling that accounts for so-called ephaptic effects is used. We provide evidence that the smaller domain sizes are possible, because different coupling strengths can exist on the wavefronts, for which both ephaptic and gap-junction coupling are involved, in contrast to the wavebacks, where only gap-junction coupling plays an active role. The differences in coupling strength are due to the high density of fast-inward (sodium) channels known to localize on the ends of cardiac cells, which are only active (and thus engage ephaptic coupling) during wavefront propagation. Thus, our results suggest that this distribution of fast-inward channels, as well as other factors responsible for the critical involvement of ephaptic coupling in wave propagation, including intercellular cleft spacing, play important roles in increasing the vulnerability of the heart to life-threatening tachyarrhythmias. Our results, combined with the absence of short-wavelength discordant alternans domains in standard gap-junction-dominated coupling models, also provide evidence that both gap-junction and ephaptic coupling are critical in wavefront propagation and waveback dynamics.


Asunto(s)
Arritmias Cardíacas , Corazón , Humanos , Potenciales de Acción/fisiología , Corazón/fisiología , Uniones Comunicantes/fisiología , Simulación por Computador , Canales de Sodio , Modelos Cardiovasculares
7.
Phys Rev Lett ; 130(21): 218401, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295103

RESUMEN

Previous computer simulations have suggested that existing models of action potential wave propagation in the heart are not consistent with observed wave propagation behavior. Specifically, computer models cannot simultaneously reproduce the rapid wave speeds and small spatial scales of discordant alternans patterns measured experimentally in the same simulation. The discrepancy is important, because discordant alternans can be a key precursor to the development of abnormal and dangerous rapid rhythms in the heart. In this Letter, we show that this paradox can be resolved by allowing so-called ephaptic coupling to play a primary role in wave front propagation in place of conventional gap-junction coupling. With this modification, physiological wave speeds and small discordant alternans spatial scales both occur with gap-junction resistance values that are more in line with those observed in experiments. Our theory thus also provides support to the hypothesis that ephaptic coupling plays an important role in normal wave propagation.


Asunto(s)
Corazón , Modelos Cardiovasculares , Potenciales de Acción/fisiología , Simulación por Computador
8.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205562

RESUMEN

Background: Repolarization alternans, defined as period-2 oscillation in the repolarization phase of the action potentials, is one of the cornerstones of cardiac electrophysiology as it provides a mechanistic link between cellular dynamics and ventricular fibrillation (VF). Theoretically, higher-order periodicities (e.g., period-4, period-8,...) are expected but have very limited experimental evidence. Methods: We studied explanted human hearts, obtained from the recipients of heart transplantation at the time of surgery, using optical mapping technique with transmembrane voltage-sensitive fluorescent dyes. The hearts were stimulated at an increasing rate until VF was induced. The signals recorded from the right ventricle endocardial surface just before the induction of VF and in the presence of 1:1 conduction were processed using the Principal Component Analysis and a combinatorial algorithm to detect and quantify higher-order dynamics. Results: A prominent and statistically significant 1:4 peak (corresponding to period-4 dynamics) was seen in three of the six studied hearts. Local analysis revealed the spatiotemporal distribution of higher-order periods. Period-4 was localized to temporally stable islands. Higher-order oscillations (period-5, 6, and 8) were transient and primarily occurred in arcs parallel to the activation isochrones. Discussion: We present evidence of higher-order periodicities and the co-existence of such regions with stable non-chaotic areas in ex-vivo human hearts before VF induction. This result is consistent with the period-doubling route to chaos as a possible mechanism of VF initiation, which complements the concordant to discordant alternans mechanism. The presence of higher-order regions may act as niduses of instability that can degenerate into chaotic fibrillation.

9.
ArXiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-36776816

RESUMEN

Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.

10.
IEEE Trans Biomed Eng ; 70(5): 1611-1621, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36399589

RESUMEN

Over the past two decades there has been a steady trend towards the development of realistic models of cardiac conduction with increasing levels of detail. However, making models more realistic complicates their personalization and use in clinical practice due to limited availability of tissue and cellular scale data. One such limitation is obtaining information about myocardial fiber organization in the clinical setting. In this study, we investigated a chimeric model of the left atrium utilizing clinically derived patient-specific atrial geometry and a realistic, yet foreign for a given patient fiber organization. We discovered that even significant variability of fiber organization had a relatively small effect on the spatio-temporal activation pattern during regular pacing. For a given pacing site, the activation maps were very similar across all fiber organizations tested.


Asunto(s)
Fibrilación Atrial , Sistema de Conducción Cardíaco , Humanos , Arritmias Cardíacas , Atrios Cardíacos , Frecuencia Cardíaca , Electricidad , Estimulación Cardíaca Artificial
11.
Med Biol Eng Comput ; 61(1): 75-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36322242

RESUMEN

Customization of cardiac action potential models has become increasingly important with the recognition of patient-specific models and virtual patient cohorts as valuable predictive tools. Nevertheless, developing customized models by fitting parameters to data poses technical and methodological challenges: despite noise and variability associated with real-world datasets, traditional optimization methods produce a single "best-fit" set of parameter values. Bayesian estimation methods seek distributions of parameter values given the data by obtaining samples from the target distribution, but in practice widely known Bayesian algorithms like Markov chain Monte Carlo tend to be computationally inefficient and scale poorly with the dimensionality of parameter space. In this paper, we consider two computationally efficient Bayesian approaches: the Hamiltonian Monte Carlo (HMC) algorithm and the approximate Bayesian computation sequential Monte Carlo (ABC-SMC) algorithm. We find that both methods successfully identify distributions of model parameters for two cardiac action potential models using model-derived synthetic data and an experimental dataset from a zebrafish heart. Although both methods appear to converge to the same distribution family and are computationally efficient, HMC generally finds narrower marginal distributions, while ABC-SMC is less sensitive to the algorithmic settings including the prior distribution.


Asunto(s)
Algoritmos , Pez Cebra , Animales , Teorema de Bayes , Método de Montecarlo , Cadenas de Markov
12.
Front Physiol ; 13: 794761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035466

RESUMEN

Conduction velocity (CV) slowing is associated with atrial fibrillation (AF) and reentrant ventricular tachycardia (VT). Clinical electroanatomical mapping systems used to localize AF or VT sources as ablation targets remain limited by the number of measuring electrodes and signal processing methods to generate high-density local activation time (LAT) and CV maps of heterogeneous atrial or trabeculated ventricular endocardium. The morphology and amplitude of bipolar electrograms depend on the direction of propagating electrical wavefront, making identification of low-amplitude signal sources commonly associated with fibrotic area difficulty. In comparison, unipolar electrograms are not sensitive to wavefront direction, but measurements are susceptible to distal activity. This study proposes a method for local CV calculation from optical mapping measurements, termed the circle method (CM). The local CV is obtained as a weighted sum of CV values calculated along different chords spanning a circle of predefined radius centered at a CV measurement location. As a distinct maximum in LAT differences is along the chord normal to the propagating wavefront, the method is adaptive to the propagating wavefront direction changes, suitable for electrical conductivity characterization of heterogeneous myocardium. In numerical simulations, CM was validated characterizing modeled ablated areas as zones of distinct CV slowing. Experimentally, CM was used to characterize lesions created by radiofrequency ablation (RFA) on isolated hearts of rats, guinea pig, and explanted human hearts. To infer the depth of RFA-created lesions, excitation light bands of different penetration depths were used, and a beat-to-beat CV difference analysis was performed to identify CV alternans. Despite being limited to laboratory research, studies based on CM with optical mapping may lead to new translational insights into better-guided ablation therapies.

13.
Chaos ; 32(6): 063117, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35778132

RESUMEN

Computational modeling and experimental/clinical prediction of the complex signals during cardiac arrhythmias have the potential to lead to new approaches for prevention and treatment. Machine-learning (ML) and deep-learning approaches can be used for time-series forecasting and have recently been applied to cardiac electrophysiology. While the high spatiotemporal nonlinearity of cardiac electrical dynamics has hindered application of these approaches, the fact that cardiac voltage time series are not random suggests that reliable and efficient ML methods have the potential to predict future action potentials. This work introduces and evaluates an integrated architecture in which a long short-term memory autoencoder (AE) is integrated into the echo state network (ESN) framework. In this approach, the AE learns a compressed representation of the input nonlinear time series. Then, the trained encoder serves as a feature-extraction component, feeding the learned features into the recurrent ESN reservoir. The proposed AE-ESN approach is evaluated using synthetic and experimental voltage time series from cardiac cells, which exhibit nonlinear and chaotic behavior. Compared to the baseline and physics-informed ESN approaches, the AE-ESN yields mean absolute errors in predicted voltage 6-14 times smaller when forecasting approximately 20 future action potentials for the datasets considered. The AE-ESN also demonstrates less sensitivity to algorithmic parameter settings. Furthermore, the representation provided by the feature-extraction component removes the requirement in previous work for explicitly introducing external stimulus currents, which may not be easily extracted from real-world datasets, as additional time series, thereby making the AE-ESN easier to apply to clinical data.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Potenciales de Acción , Simulación por Computador , Factores de Tiempo
15.
Proc Natl Acad Sci U S A ; 119(24): e2117568119, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35679346

RESUMEN

We identify and demonstrate a universal mechanism for terminating spiral waves in excitable media using an established topological framework. This mechanism dictates whether high- or low-energy defibrillation shocks succeed or fail. Furthermore, this mechanism allows for the design of a single minimal stimulus capable of defibrillating, at any time, turbulent states driven by multiple spiral waves. We demonstrate this method in a variety of computational models of cardiac tissue ranging from simple to detailed human models. The theory described here shows how this mechanism underlies all successful defibrillation and can be used to further develop existing and future low-energy defibrillation strategies.


Asunto(s)
Cardioversión Eléctrica , Corazón , Simulación por Computador , Cardioversión Eléctrica/métodos , Humanos , Modelos Cardiovasculares
17.
Mach Learn Appl ; 82022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35755176

RESUMEN

In recent years, machine-learning techniques, particularly deep learning, have outperformed traditional time-series forecasting approaches in many contexts, including univariate and multivariate predictions. This study aims to investigate the capability of (i) gated recurrent neural networks, including long short-term memory (LSTM) and gated recurrent unit (GRU) networks, (ii) reservoir computing (RC) techniques, such as echo state networks (ESNs) and hybrid physics-informed ESNs, and (iii) the nonlinear vector autoregression (NVAR) approach, which has recently been introduced as the next generation RC, for the prediction of chaotic time series and to compare their performance in terms of accuracy, efficiency, and robustness. We apply the methods to predict time series obtained from two widely used chaotic benchmarks, the Mackey-Glass and Lorenz-63 models, as well as two other chaotic datasets representing a bursting neuron and the dynamics of the El Niño Southern Oscillation, and to one experimental dataset representing a time series of cardiac voltage with complex dynamics. We find that even though gated RNN techniques have been successful in forecasting time series generally, they can fall short in predicting chaotic time series for the methods, datasets, and ranges of hyperparameter values considered here. In contrast, for the chaotic datasets studied, we found that reservoir computing and NVAR techniques are more computationally efficient and offer more promise in long-term prediction of chaotic time series.

18.
Front Physiol ; 13: 812968, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222080

RESUMEN

Most cardiac arrhythmias at the whole heart level result from alteration of cell membrane ionic channels and intracellular calcium concentration ([Ca2+] i ) cycling with emerging spatiotemporal behavior through tissue-level coupling. For example, dynamically induced spatial dispersion of action potential duration, QT prolongation, and alternans are clinical markers for arrhythmia susceptibility in regular and heart-failure patients that originate due to changes of the transmembrane voltage (V m) and [Ca2+] i . We present an optical-mapping methodology that permits simultaneous measurements of the V m - [Ca2+] i signals using a single-camera without cross-talk, allowing quantitative characterization of favorable/adverse cell and tissue dynamical effects occurring from remodeling and/or drugs in heart failure. We demonstrate theoretically and experimentally in six different species the existence of a family of excitation wavelengths, we termed semasbestic, that give no change in signal for one dye, and thus can be used to record signals from another dye, guaranteeing zero cross-talk.

19.
Biophys J ; 121(3): 383-395, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968425

RESUMEN

A wide range of atrial arrythmias are caused by molecular defects in proteins that regulate calcium (Ca) cycling. In many cases, these defects promote the propagation of subcellular Ca waves in the cell, which can perturb the voltage time course and induce dangerous perturbations of the action potential (AP). However, subcellular Ca waves occur randomly in cells and, therefore, electrical coupling between cells substantially decreases their effect on the AP. In this study, we present evidence that Ca waves in atrial tissue can synchronize in-phase owing to an order-disorder phase transition. In particular, we show that, below a critical pacing rate, Ca waves are desynchronized and therefore do not induce substantial AP fluctuations in tissue. However, above this critical pacing rate, Ca waves gradually synchronize over millions of cells, which leads to a dramatic amplification of AP fluctuations. We exploit an underlying Ising symmetry of paced cardiac tissue to show that this transition exhibits universal properties common to a wide range of physical systems in nature. Finally, we show that in the heart, phase synchronization induces spatially out-of-phase AP duration alternans which drives wave break and reentry. These results suggest that cardiac tissue exhibits a phase transition that is required for subcellular Ca cycling defects to induce a life-threatening arrhythmia.


Asunto(s)
Señalización del Calcio , Miocitos Cardíacos , Potenciales de Acción/fisiología , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Atrios Cardíacos/metabolismo , Humanos , Miocitos Cardíacos/metabolismo
20.
Front Netw Physiol ; 2: 866101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36926104

RESUMEN

Understanding and predicting the mechanisms promoting the onset and sustainability of cardiac arrhythmias represent a primary concern in the scientific and medical communities still today. Despite the long-lasting effort in clinical and physico-mathematical research, a critical aspect to be fully characterized and unveiled is represented by spatiotemporal alternans patterns of cardiac excitation. The identification of discordant alternans and higher-order alternating rhythms by advanced data analyses as well as their prediction by reliable mathematical models represents a major avenue of research for a broad and multidisciplinary scientific community. Current limitations concern two primary aspects: 1) robust and general-purpose feature extraction techniques and 2) in silico data assimilation within reliable and predictive mathematical models. Here, we address both aspects. At first, we extend our previous works on Fourier transformation imaging (FFI), applying the technique to whole-ventricle fluorescence optical mapping. Overall, we identify complex spatial patterns of voltage alternans and characterize higher-order rhythms by a frequency-series analysis. Then, we integrate the optical ultrastructure obtained by FFI analysis within a fine-tuned electrophysiological mathematical model of the cardiac action potential. We build up a novel data assimilation procedure demonstrating its reliability in reproducing complex alternans patterns in two-dimensional computational domains. Finally, we prove that the FFI approach applied to both experimental and simulated signals recovers the same information, thus closing the loop between the experiment, data analysis, and numerical simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...