Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 40: 101028, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32504885

RESUMEN

OBJECTIVE: Evidence for AMP-activated protein kinase (AMPK)-mediated regulation of skeletal muscle metabolism during exercise is mainly based on transgenic mouse models with chronic (lifelong) disruption of AMPK function. Findings based on such models are potentially biased by secondary effects related to a chronic lack of AMPK function. To study the direct effect(s) of AMPK on muscle metabolism during exercise, we generated a new mouse model with inducible muscle-specific deletion of AMPKα catalytic subunits in adult mice. METHODS: Tamoxifen-inducible and muscle-specific AMPKα1/α2 double KO mice (AMPKα imdKO) were generated by using the Cre/loxP system, with the Cre under the control of the human skeletal muscle actin (HSA) promoter. RESULTS: During treadmill running at the same relative exercise intensity, AMPKα imdKO mice showed greater depletion of muscle ATP, which was associated with accumulation of the deamination product IMP. Muscle-specific deletion of AMPKα in adult mice promptly reduced maximal running speed and muscle glycogen content and was associated with reduced expression of UGP2, a key component of the glycogen synthesis pathway. Muscle mitochondrial respiration, whole-body substrate utilization, and muscle glucose uptake and fatty acid (FA) oxidation during muscle contractile activity remained unaffected by muscle-specific deletion of AMPKα subunits in adult mice. CONCLUSIONS: Inducible deletion of AMPKα subunits in adult mice reveals that AMPK is required for maintaining muscle ATP levels and nucleotide balance during exercise but is dispensable for regulating muscle glucose uptake, FA oxidation, and substrate utilization during exercise.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Transporte Biológico , Femenino , Ingeniería Genética , Glucosa/metabolismo , Glucógeno/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Nucleótidos/metabolismo , Oxidación-Reducción , Fosforilación , Ribonucleótidos/metabolismo
2.
Mol Metab ; 16: 24-34, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30093357

RESUMEN

OBJECTIVE: A single bout of exercise followed by intake of carbohydrates leads to glycogen supercompensation in prior exercised muscle. Our objective was to illuminate molecular mechanisms underlying this phenomenon in skeletal muscle of man. METHODS: We studied the temporal regulation of glycogen supercompensation in human skeletal muscle during a 5 day recovery period following a single bout of exercise. Nine healthy men depleted (day 1), normalized (day 2) and supercompensated (day 5) muscle glycogen in one leg while the contralateral leg served as a resting control. Euglycemic hyperinsulinemic clamps in combination with leg balance technique allowed for investigating insulin-stimulated leg glucose uptake under these 3 experimental conditions. Cellular signaling in muscle biopsies was investigated by global proteomic analyses and immunoblotting. We strengthened the validity of proposed molecular effectors by follow-up studies in muscle of transgenic mice. RESULTS: Sustained activation of glycogen synthase (GS) and AMPK in combination with elevated expression of proteins determining glucose uptake capacity were evident in the prior exercised muscle. We hypothesize that these alterations offset the otherwise tight feedback inhibition of glycogen synthesis and glucose uptake by glycogen. In line with key roles of AMPK and GS seen in the human experiments we observed abrogated ability for glycogen supercompensation in muscle with inducible AMPK deletion and in muscle carrying a G6P-insensitive form of GS in muscle. CONCLUSION: Our study demonstrates that both AMPK and GS are key regulators of glycogen supercompensation following a single bout of glycogen-depleting exercise in skeletal muscle of both man and mouse.


Asunto(s)
Ejercicio Físico/fisiología , Glucógeno/metabolismo , Músculo Esquelético/metabolismo , Adulto , Animales , Metabolismo de los Hidratos de Carbono , Carbohidratos , Carbohidratos de la Dieta/metabolismo , Glucosa/metabolismo , Glucógeno/biosíntesis , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa/fisiología , Humanos , Insulina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Condicionamiento Físico Animal , Proteómica , Transducción de Señal/efectos de los fármacos
3.
FASEB J ; 32(4): 1741-1777, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29242278

RESUMEN

Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK's role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism ( e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.-Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.


Asunto(s)
Músculo Esquelético/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Adaptación Fisiológica , Animales , Metabolismo Energético , Ejercicio Físico , Humanos , Músculo Esquelético/fisiología , Proteínas Quinasas/química , Proteínas Quinasas/genética
4.
J Clin Invest ; 126(9): 3433-46, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27525440

RESUMEN

Diabetes strongly impacts protein metabolism, particularly in skeletal muscle. Insulin and IGF-1 enhance muscle protein synthesis through their receptors, but the relative roles of each in muscle proteostasis have not been fully elucidated. Using mice with muscle-specific deletion of the insulin receptor (M-IR-/- mice), the IGF-1 receptor (M-IGF1R-/- mice), or both (MIGIRKO mice), we assessed the relative contributions of IR and IGF1R signaling to muscle proteostasis. In differentiated muscle, IR expression predominated over IGF1R expression, and correspondingly, M-IR-/- mice displayed a moderate reduction in muscle mass whereas M-IGF1R-/- mice did not. However, these receptors serve complementary roles, such that double-knockout MIGIRKO mice displayed a marked reduction in muscle mass that was linked to increases in proteasomal and autophagy-lysosomal degradation, accompanied by a high-protein-turnover state. Combined muscle-specific deletion of FoxO1, FoxO3, and FoxO4 in MIGIRKO mice reversed increased autophagy and completely rescued muscle mass without changing proteasomal activity. These data indicate that signaling via IR is more important than IGF1R in controlling proteostasis in differentiated muscle. Nonetheless, the overlap of IR and IGF1R signaling is critical to the regulation of muscle protein turnover, and this regulation depends on suppression of FoxO-regulated, autophagy-mediated protein degradation.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Insulina/metabolismo , Músculo Esquelético/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Autofagia , Diferenciación Celular , Femenino , Proteína Forkhead Box O1/genética , Eliminación de Gen , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Atrofia Muscular/metabolismo , Mioblastos/metabolismo , Oxígeno/química , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptor de Insulina/genética , Transducción de Señal
5.
Am J Physiol Endocrinol Metab ; 309(11): E900-14, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26419588

RESUMEN

Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5'-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exercise-induced gene regulation, would be compromised in muscle-specific AMPKα1 and -α2 double-knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome c oxidase subunit I, glucose transporter 4, and VEGF in an AMPK-dependent manner, whereas cluster of differentiation 36 and fatty acid transport protein 1 mRNA content increased similarly in AMPKα wild-type (WT) and mdKO mice. During 4 wk of voluntary running wheel exercise training, the AMPKα mdKO mice ran less than WT. Maximal running speed was lower in AMPKα mdKO than in WT mice but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), cytochrome c, hexokinase II, plasma membrane fatty acid-binding protein, and citrate synthase activity more in AMPKα WT than in mdKO muscle. However, analysis of a subgroup of mice matched for running distance revealed that only UQCRC1 protein content increased more in WT than in mdKO mice with exercise training. Thus, AMPKα1 and -α2 subunits are important for acute exercise-induced mRNA responses of some genes and may be involved in regulating basal metabolic protein expression but seem to be less important in exercise training-induced adaptations in metabolic proteins.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Alostasis , Regulación de la Expresión Génica , Actividad Motora , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimología , Proteínas Quinasas Activadas por AMP/genética , Animales , Cruzamientos Genéticos , Femenino , Ratones Noqueados , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Mensajero/metabolismo , Distribución Aleatoria , Factores de Tiempo , Regulación hacia Arriba
6.
Diabetes ; 64(6): 2042-55, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25552597

RESUMEN

An acute bout of exercise increases glucose uptake in skeletal muscle by an insulin-independent mechanism. In the period after exercise, insulin sensitivity to increased glucose uptake is enhanced. The molecular mechanisms underpinning this phenomenon are poorly understood but appear to involve an increased cell surface abundance of GLUT4. While increased proximal insulin signaling does not seem to mediate this effect, elevated phosphorylation of TBC1D4, a downstream target of both insulin (Akt) and exercise (AMPK) signaling, appears to play a role. The main purpose of this study was to determine whether AMPK activation increases skeletal muscle insulin sensitivity. We found that prior AICAR stimulation of wild-type mouse muscle increases insulin sensitivity to stimulate glucose uptake. However, this was not observed in mice with reduced or ablated AMPK activity in skeletal muscle. Furthermore, prior AICAR stimulation enhanced insulin-stimulated phosphorylation of TBC1D4 at Thr(649) and Ser(711) in wild-type muscle only. These phosphorylation events were positively correlated with glucose uptake. Our results provide evidence to support that AMPK activation is sufficient to increase skeletal muscle insulin sensitivity. Moreover, TBC1D4 phosphorylation may facilitate the effect of prior AMPK activation to enhance glucose uptake in response to insulin.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ribonucleótidos/farmacología , Aminoimidazol Carboxamida/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , Electroforesis en Gel de Poliacrilamida , Proteínas Activadoras de GTPasa/metabolismo , Insulina/metabolismo , Ratones , Fosforilación/efectos de los fármacos
7.
FASEB J ; 29(5): 1725-38, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25609422

RESUMEN

The importance of AMPK in regulation of fatty acid (FA) oxidation in skeletal muscle with contraction/exercise is unresolved. Using a mouse model lacking both AMPKα1 and -α2 in skeletal muscle specifically (mdKO), we hypothesized that FA utilization would be impaired in skeletal muscle. AMPKα mdKO mice displayed normal respiratory exchange ratio (RER) when fed chow or a high-fat diet, or with prolonged fasting. However, in vivo treadmill exercise at the same relative intensity induced a higher RER in AMPKα mdKO mice compared to wild-type (WT = 0.81 ± 0.01 (sem); mdKO = 0.87 ± 0.02 (sem); P < 0.01), indicating a decreased utilization of FA. Further, ex vivo contraction-induced FA oxidation was impaired in AMPKα mdKO muscle, suggesting that the increased RER during exercise originated from decreased skeletal muscle FA oxidation. A decreased muscle protein expression of CD36 (cluster of differentiation 36) and FABPpm (plasma membrane fatty acid binding protein) (by ∼17-40%), together with fully abolished TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) Ser(237) phosphorylation during contraction/exercise in AMPKα mdKO mice, may impair FA transport capacity and FA transport protein translocation to sarcolemma, respectively. AMPKα is thus required for normal FA metabolism during exercise and muscle contraction.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Ácidos Grasos/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Animales , Biomarcadores/metabolismo , Glucemia/metabolismo , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Hígado/citología , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Respiración
8.
FASEB J ; 28(7): 3211-24, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24652947

RESUMEN

AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production and fatigue resistance. An increase in the proportion of myofibers with centralized nuclei was noted, as well as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and mitochondrial substrate utilization but not baseline mitochondrial muscle content. Together, these results demonstrate that skeletal muscle AMPK has an unexpected role in the regulation of mitochondrial oxidative phosphorylation that contributes to the energy demands of the exercising muscle.-Lantier, L., Fentz, J., Mounier, R., Leclerc, J., Treebak, J. T., Pehmøller, C., Sanz, N., Sakakibara, I., Saint-Amand, E., Rimbaud, S., Maire, P., Marette, A., Ventura-Clapier, R., Ferry, A., Wojtaszewski, J. F. P., Foretz, M., Viollet, B. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Resistencia Física/fisiología , Animales , Glucosa/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Oxidación-Reducción , Fosforilación/fisiología , Condicionamiento Físico Animal
9.
PLoS One ; 8(12): e82869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376599

RESUMEN

Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa) loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.


Asunto(s)
Monocitos/inmunología , Neutrófilos/inmunología , Condicionamiento Físico Animal/efectos adversos , Infecciones por Pseudomonas/inmunología , Infecciones del Sistema Respiratorio/inmunología , Bazo/inmunología , Animales , Carga Bacteriana , Susceptibilidad a Enfermedades , Femenino , Ratones , Ratones Endogámicos C57BL , Monocitos/microbiología , Monocitos/patología , Neutrófilos/microbiología , Neutrófilos/patología , Fagocitosis , Infecciones por Pseudomonas/etiología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología , Infecciones del Sistema Respiratorio/etiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/patología , Índice de Severidad de la Enfermedad , Bazo/microbiología , Bazo/patología
10.
J Physiol ; 591(20): 5207-20, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23918774

RESUMEN

Deacetylases such as sirtuins (SIRTs) convert NAD to nicotinamide (NAM). Nicotinamide phosphoribosyl transferase (Nampt) is the rate-limiting enzyme in the NAD salvage pathway responsible for converting NAM to NAD to maintain cellular redox state. Activation of AMP-activated protein kinase (AMPK) increases SIRT activity by elevating NAD levels. As NAM directly inhibits SIRTs, increased Nampt activation or expression could be a metabolic stress response. Evidence suggests that AMPK regulates Nampt mRNA content, but whether repeated AMPK activation is necessary for increasing Nampt protein levels is unknown. To this end, we assessed whether exercise training- or 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR)-mediated increases in skeletal muscle Nampt abundance are AMPK dependent. One-legged knee-extensor exercise training in humans increased Nampt protein by 16% (P < 0.05) in the trained, but not the untrained leg. Moreover, increases in Nampt mRNA following acute exercise or AICAR treatment (P < 0.05 for both) were maintained in mouse skeletal muscle lacking a functional AMPK α2 subunit. Nampt protein was reduced in skeletal muscle of sedentary AMPK α2 kinase dead (KD), but 6.5 weeks of endurance exercise training increased skeletal muscle Nampt protein to a similar extent in both wild-type (WT) (24%) and AMPK α2 KD (18%) mice. In contrast, 4 weeks of daily AICAR treatment increased Nampt protein in skeletal muscle in WT mice (27%), but this effect did not occur in AMPK α2 KD mice. In conclusion, functional α2-containing AMPK heterotrimers are required for elevation of skeletal muscle Nampt protein, but not mRNA induction. These findings suggest AMPK plays a post-translational role in the regulation of skeletal muscle Nampt protein abundance, and further indicate that the regulation of cellular energy charge and nutrient sensing is mechanistically related.


Asunto(s)
Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Adulto , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Ejercicio Físico , Células HEK293 , Humanos , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Nicotinamida Fosforribosiltransferasa/genética , Esfuerzo Físico , Ribonucleótidos/farmacología
11.
Am J Physiol Endocrinol Metab ; 299(3): E456-65, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20628026

RESUMEN

We tested the hypothesis that repeated activation of AMP-activated protein kinase (AMPK) induces mitochondrial and glucose membrane transporter mRNA/protein expression via a peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha)-dependent mechanism. Whole body PGC-1alpha-knockout (KO) and littermate wild-type (WT) mice were given either single or repeated subcutaneous injections of the AMPK activator AICAR or saline. Skeletal muscles were removed either 1 or 4 h after the single AICAR treatment or 24 h after the last injection following repeated AICAR treatment. Repeated AICAR treatment increased GLUT4, cytochrome (cyt) c oxidase I, and (cyt) c protein expression approximately 10-40% relative to saline in white muscles of WT but not of PGC-1alpha-KO mice, whereas fatty acid translocase/CD36 (FAT/CD36) protein expression was unaffected by AICAR treatment in both genotypes. GLUT4, cyt c, and FAT/CD36 mRNA content increased 30-60% 4 h after a single AICAR injection relative to saline in WT, and FAT/CD36 mRNA content decreased in PGC-1alpha-KO mice. One hour after a single AICAR treatment, phosphorylation of AMPK and the downstream target acetyl-coenzyme A carboxylase increased in all muscles investigated independent of genotype, indicating normal AICAR-induced AMPK signaling in the absence of PGC-1alpha. The hexokinase II (HKII) mRNA and protein response was similar in muscles of WT and PGC-1alpha-KO mice after single and repeated AICAR treatments, respectively, confirming that HKII is regulated independently of PGC-1alpha in response to AICAR. In conclusion, here we provide genetic evidence for a role of PGC-1alpha in AMPK-mediated regulation of mitochondrial and glucose membrane transport protein expression in skeletal muscle.


Asunto(s)
Adenilato Quinasa/metabolismo , Antígenos CD36/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Transportador de Glucosa de Tipo 4/biosíntesis , Músculo Esquelético/metabolismo , Transactivadores/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Glucemia/metabolismo , Western Blotting , Antígenos CD36/genética , Complejo IV de Transporte de Electrones/genética , Activación Enzimática , Femenino , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/enzimología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , ARN Mensajero/química , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleótidos/farmacología , Factores de Transcripción
12.
Am J Physiol Endocrinol Metab ; 297(1): E92-103, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19401459

RESUMEN

The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression approximately 50% in WT mice but with no effect in PGC-1alpha KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1alpha KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression approximately 15% in WT but not in PGC-1alpha KO mice. This study shows that PGC-1alpha is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1alpha.


Asunto(s)
Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Transactivadores/fisiología , Factor A de Crecimiento Endotelial Vascular/genética , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/fisiología , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Ribonucleótidos/farmacología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...