Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459022

RESUMEN

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Asunto(s)
Vacunas contra Difteria, Tétanos y Tos Ferina Acelular , Difteria , Poliovirus , Tétanos , Tos Ferina , Adolescente , Humanos , Bordetella pertussis , Inmunidad Humoral , Tos Ferina/prevención & control , Difteria/prevención & control , Vacunas Combinadas , Anticuerpos Antibacterianos , Vacuna Antipolio de Virus Inactivados , Vacunación , Inmunización Secundaria , Corynebacterium , Interferones , Antivirales
2.
Infect Dis Ther ; 13(1): 173-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38221576

RESUMEN

INTRODUCTION: COVID-19 remains a significant risk for the immunocompromised given their lower responsiveness to vaccination or infection. Therefore, passive immunity through long-acting monoclonal antibodies (mAbs) offers a needed approach for pre-exposure prophylaxis (PrEP). Our study evaluated safety, anti-SARS-CoV-2 neutralizing activity, nasal penetration, and pharmacokinetics (PK) of two half-life-extended investigational mAbs, AER001 and AER002, providing the first demonstration of upper airway penetration of mAbs with the LS-modification. METHODS: This randomized, double-blind, placebo-controlled phase I study enrolled healthy adults (n = 80) who received two long-acting COVID mAbs (AER001 and AER002), AER002 alone, or placebo. The dose ranged from 100 mg (mg) to 1200 mg per mAb component. The primary objective was to describe the safety and tolerability following intravenous (IV) administration. Secondary objectives were to describe PK, anti-drug antibodies (ADA), neutralization activity levels, and safety evaluation through 6 months of follow-up. RESULTS: The majority (97.6%) of the reported adverse events (AE) post administration were of grade 1 severity. There were no serious adverse events (SAE) or ADAs. AER001 and AER002 successfully achieved an extended half-life of 105 days and 97.5 days, respectively. Participants receiving AER001 and AER002 (300 mg each) or AER002 (300 mg) alone showed 15- and 26-fold higher neutralization levels against D614G and omicron BA.1 than the placebo group 24 h post-administration. Single 300 or 1200 mg IV dose of AER001 and AER002 resulted in nasal mucosa transudation of approximately 2.5% and 2.7%, respectively. CONCLUSION: AER001 and AER002 showed an acceptable safety profile and extended half-life. High serum neutralization activity was observed against D614G and Omicron BA.1 compared to the placebo group. These data support that LS-modified mAbs can achieve durability, safety, potency, and upper airway tissue penetration and will guide the development of the next generation of mAbs for COVID-19 prevention and treatment. TRIAL REGISTRATION: EudraCT Number 2022-001709-35 (COV-2022-001).

3.
Nat Commun ; 14(1): 7764, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012137

RESUMEN

Understanding the development of humoral immune responses of children and adolescents to SARS-CoV-2 is essential for designing effective public health measures. Here we examine the changes of humoral immune response in school-aged children and adolescents during the COVID-19 pandemic (June 2020 to July 2022), with a specific interest in the Omicron variant (beginning of 2022). In our study "Ciao Corona", we assess in each of the five testing rounds between 1874 and 2500 children and adolescents from 55 schools in the canton of Zurich with a particular focus on a longitudinal cohort (n=751). By July 2022, 96.9% (95% credible interval 95.3-98.1%) of children and adolescents have SARS-CoV-2 anti-spike IgG (S-IgG) antibodies. Those with hybrid immunity or vaccination have higher S-IgG titres and stronger neutralising responses against Wildtype, Delta and Omicron BA.1 variants compared to those infected but unvaccinated. S-IgG persist over 18 months in 93% of children and adolescents. During the study period one adolescent was hospitalised for less than 24 hours possibly related to an acute SARS-CoV-2 infection. These findings show that the Omicron wave and the rollout of vaccines boosted S-IgG titres and neutralising capacity. Trial registration number: NCT04448717. https://clinicaltrials.gov/ct2/show/NCT04448717 .


Asunto(s)
COVID-19 , Niño , Humanos , Adolescente , COVID-19/epidemiología , Inmunidad Humoral , SARS-CoV-2 , Estudios de Cohortes , Pandemias , Estudios Prospectivos , Anticuerpos Antivirales , Inmunoglobulina G , Anticuerpos Neutralizantes
4.
J Infect ; 87(6): 524-537, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37852477

RESUMEN

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Haplorrinos
5.
Cell Host Microbe ; 31(10): 1714-1731.e9, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751747

RESUMEN

Although gut and lymph node (LN) memory CD4 T cells represent major HIV and simian immunodeficiency virus (SIV) tissue reservoirs, the study of the role of dendritic cells (DCs) in HIV persistence has long been limited to the blood due to difficulties to access lymphoid tissue samples. In this study, we show that LN migratory and resident DC subpopulations harbor distinct phenotypic and transcriptomic profiles. Interestingly, both LN DC subpopulations contain HIV intact provirus and inducible replication-competent HIV despite the expression of the antiviral restriction factor SAMHD1. Notably, LN DC subpopulations isolated from HIV-infected individuals treated for up to 14 years are transcriptionally silent but harbor replication-competent virus that can be induced upon TLR7/8 stimulation. Taken together, these results uncover a potential important contribution of LN DCs to HIV infection in the presence of ART.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Linfocitos T CD4-Positivos , Antirretrovirales/uso terapéutico , Ganglios Linfáticos , Células Dendríticas
6.
Front Immunol ; 14: 1213375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622123

RESUMEN

Therapeutic monoclonal antibodies (mAb) targeting the immune checkpoint inhibitor programmed cell death protein 1 (PD-1) have achieved considerable clinical success in anti-cancer therapy through relieving T cell exhaustion. Blockade of PD-1 interaction with its ligands PD-L1 and PD-L2 is an important determinant in promoting the functional recovery of exhausted T cells. Here, we show that anti-PD-1 mAbs act through an alternative mechanism leading to the downregulation of PD-1 surface expression on memory CD4+ and CD8+ T cells. PD-1 receptor downregulation is a distinct process from receptor endocytosis and occurs in a CD14+ monocyte dependent manner with the CD64/Fcγ receptor I acting as the primary factor for this T cell extrinsic process. Importantly, downregulation of surface PD-1 strongly enhances antigen-specific functional recovery of exhausted PD-1+CD8+ T cells. Our study demonstrates a novel mechanism for reducing cell surface levels of PD-1 and limiting the inhibitory targeting by PD-L1/2 and thereby enhancing the efficacy of anti-PD-1 Ab in restoring T cell functionality.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de IgG , Antígeno B7-H1 , Membrana Celular , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico
7.
J Infect ; 87(2): 111-119, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321353

RESUMEN

OBJECTIVES: Intradermal skin test (IDT) with mRNA vaccines may represent a simple, reliable, and affordable tool to measure T cell response in immunocompromised patients who failed to mount serological responses following vaccination with mRNA covid-19 vaccines. METHODS: We compared anti-SARS-CoV-2 antibodies and cellular responses in vaccinated immunocompromised patients (n = 58), healthy seronegative naive controls (NC, n = 8), and healthy seropositive vaccinated controls (VC, n = 32) by Luminex, spike-induced IFN-γ Elispot and an IDT. A skin biopsy 24 h after IDT and single-cell RNAseq was performed in three vaccinated volunteers. RESULTS: Twenty-five percent of seronegative NC had a positive Elispot (2/8) and IDT (1/4), compared to 95% (20/21) and 93% (28/30) in seropositive VC, respectively. Single-cell RNAseq data in the skin of VC showed a predominant mixed population of effector helper and cytotoxic T cells. The TCR repertoire revealed 18/1064 clonotypes with known specificities against SARS-CoV-2, among which six were spike-specific. Seronegative immunocompromised patients with positive Elispot and IDT were in 83% (5/6) treated with B cell-depleting reagents, while those with negative IDT were all transplant recipients. CONCLUSIONS: Our results indicate that delayed local reaction to IDT reflects vaccine-induced T-cell immunity opening new perspectives to monitor seronegative patients and elderly populations with waning immunity.


Asunto(s)
COVID-19 , Linfocitos T , Anciano , Humanos , Vacunas contra la COVID-19 , COVID-19/diagnóstico , COVID-19/prevención & control , SARS-CoV-2 , Biomarcadores , Vacunas de ARNm , Anticuerpos Antivirales , Huésped Inmunocomprometido , Pruebas Cutáneas , Vacunación
8.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37380369

RESUMEN

Cytokine storm induced by anti-human epidermal growth factor receptor-2 (HER2) therapies has not been reported. We report a patient with breast cancer treated with trastuzumab/pertuzumab who developed severe biventricular dysfunction and cardiogenic shock (CS) 6 months after starting double anti-HER2 therapy. The CS was accompanied by severe systemic inflammation, and cardiac MRI (cMRI) showed structural changes typical of myocardial inflammation. The immuno-inflammatory profile showed significantly increased levels of activation of the complement system, proinflammatory cytokines (IL-1ß, IL-6, IL-18, IL-17A, TNF-alpha) with increased activity of classical monocytic, T helper 17 cells (Th17), CD4 T and effector memory CD8 T subsets, whereas NK cell activation was not observed. The data suggest an important role for monocytes as initiators of this FcγR-dependent antibody-dependent cytotoxicity, leading to the overactivation of an adaptive T cell response, in which Th17 cells may act in synergy with T helper 1 cells (Th1) to drive the severe cytokine release syndrome. After discontinuation of trastuzumab/pertuzumab, hypercytokinemia and complement activity normalized along with clinical recovery. Cardiac function returned to baseline within 2 months of initial presentation, together with a resolution of the myocardial inflammation on MRI.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/etiología , Citocinas , Choque Cardiogénico/inducido químicamente
10.
J Clin Immunol ; 43(5): 882-893, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36943669

RESUMEN

PURPOSE: Following a severe COVID-19 infection, a proportion of individuals develop prolonged symptoms. We investigated the immunological dysfunction that underlies the persistence of symptoms months after the resolution of acute COVID-19. METHODS: We analyzed cytokines, cell phenotypes, SARS-CoV-2 spike-specific and neutralizing antibodies, and whole blood gene expression profiles in convalescent severe COVID-19 patients 1, 3, and 6 months following hospital discharge. RESULTS: We observed persistent abnormalities until month 6 marked by (i) high serum levels of monocyte/macrophage and endothelial activation markers, chemotaxis, and hematopoietic cytokines; (ii) a high frequency of central memory CD4+ and effector CD8+ T cells; (iii) a decrease in anti-SARS-CoV-2 spike and neutralizing antibodies; and (iv) an upregulation of genes related to platelet, neutrophil activation, erythrocytes, myeloid cell differentiation, and RUNX1 signaling. We identified a "core gene signature" associated with a history of thrombotic events, with upregulation of a set of genes involved in neutrophil activation, platelet, hematopoiesis, and blood coagulation. CONCLUSION: The lack of restoration of gene expression to a normal profile after up to 6 months of follow-up, even in asymptomatic patients who experienced severe COVID-19, signals the need to carefully extend their clinical follow-up and propose preventive measures.


Asunto(s)
COVID-19 , Trombosis , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Activación Neutrófila , Anticuerpos Neutralizantes , Trombosis/etiología , Citocinas , Anticuerpos Antivirales
11.
Artículo en Inglés | MEDLINE | ID: mdl-36717268

RESUMEN

BACKGROUND AND OBJECTIVE: Depleting CD20+ B cells is the primary mechanism by which ocrelizumab (OCRE) is efficient in persons with multiple sclerosis (pwMS). However, the exact role of OCRE on other immune cell subsets directly or indirectly remains elusive. The purpose of this study is to characterize the dynamics of peripheral immune cells of pwMS on OCRE. METHODS: We collected blood samples from 38 pwMS before OCRE onset (T0) and at 6 and 12 months (T6, T12) after initiation. To cover the immune cell diversity, using mass cytometry time of flight, we designed a 38-parameter panel to analyze B, T, and innate immune cell markers and CNS migratory markers. In parallel, viral-specific CD8+ T-cell responses were assessed by the quantification of interferon-γ secretion using the enzyme-linked immunospot assay on cytomegalovirus, Epstein-Barr virus, and influenza stimulations. RESULTS: Beside B-cell depletion, we observed a loss in memory CD8+CD20+ and central memory CD8+ T cells but not in CD4+CD20+ T cells already at T6 and T12 (p < 0.001). The loss of memory CD8+ T cells correlated with a lower CXCR3 expression (p < 0.001) and CNS-related LFA-1 integrin expression (p < 0.001) as well as a reduced antiviral cellular immune response observed at both time points (p < 0.001). Of note, we did not observe major changes in the phenotype of the other cell types studied. Seven of 38 (18.4%) patients in our cohort presented with infections while on OCRE; 4 of which were switched from dimethyl fumarate. Finally, using a mixed linear model on mass cytometry data, we demonstrated that the immunomodulation induced by previous disease-modifying therapies (DMTs) was prolonged over the period of the study. DISCUSSION: In addition to its well-known role on B cells, our data suggest that OCRE also acts on CD8+ T cells by depleting the memory compartment. These changes in CD8+ T cells may be an asset in the action of OCRE on MS course but might also contribute to explain the increased occurrence of infections in these patients. Finally, although more data are needed to confirm this observation, it suggests that clinicians should pay a special attention to an increased infection risk in pwMS switched from other DMTs to OCRE.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/metabolismo , Estudios Longitudinales , Fenotipo
12.
Viruses ; 14(12)2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36560669

RESUMEN

A better understanding of the immunological markers associated with long-lasting immune responses to SARS-CoV-2 infection is of paramount importance. In the present study, we characterized SARS-CoV-2-specific humoral responses in hospitalized (ICU and non-ICU) and non-hospitalized individuals at six months post-onset of symptoms (POS) (N = 95). We showed that the proportion of individuals with detectable anti-SARS-CoV-2 IgG or neutralizing (NAb) responses and the titers of antibodies were significantly reduced in non-hospitalized individuals, compared to ICU- or non-ICU-hospitalized individuals at 6 months POS. Interestingly, SARS-CoV-2-specific memory B cells persist at 6 months POS in both ICU and non-ICU patients and were enriched in cells harboring an activated and/or exhausted phenotype. The frequency/phenotype of SARS-CoV-2-specific memory B cells and the magnitude of IgG or NAb responses at 6 months POS correlated with the serum immune signature detected at patient admission. In particular, the serum levels of CXCL13, IL-1RA, and G-CSF directly correlated with the frequency of Spike-specific B cells and the magnitude of Spike-specific IgG or NAb, while the serum levels of CXCL12 showed an antagonizing effect. Our results indicate that the balance between CXCL12 and CXCL13 is an early marker associated with the magnitude and the quality of the SARS-CoV-2 humoral memory.


Asunto(s)
COVID-19 , Quimiocina CXCL12 , Quimiocina CXCL13 , Citocinas , Inmunidad Humoral , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Quimiocina CXCL12/sangre , Quimiocina CXCL13/sangre , COVID-19/inmunología , Citocinas/sangre , Inmunoglobulina G , SARS-CoV-2
13.
Front Immunol ; 13: 960120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091040

RESUMEN

Optimal T follicular helper (Tfh) cells function is important to promote the development of germinal centers and maturation of high affinity antigen-specific B cells. We have found that the expression of CXCR3 defines distinct Tfh subsets: CXCR3+ Th1-like Tfh cells mainly producing single IFN-γ and dual IL-21/IFN-γ and CXCR3- Th2-like Tfh cells mainly producing single IL-4 and dual IL-21/IL-4 cytokines. CXCR3- Th2-like Tfhs are significantly reduced during ongoing HIV replication. While the percentage of Th2-like Tfh cells correlates with that of total and cycling HIV-specific B cells, the percentage of CXCR3+ Th1-like Tfhs correlates with HIV-specific B cells expressing T-bet and CXCR3. Of note, only IL-4 and IL-21 cytokines boosted efficient maturation of HIV-specific B cells while IFN-γ induced expression of T-bet and CXCR3 in B cells. Interestingly, total and HIV-specific CXCR3+ B cells showed lower rate of somatic hypermutation, as compared to CXCR3- B cells. Therefore, the imbalance in Th2/Th1-like Tfhs affects B cell responses in viremic HIV infection.


Asunto(s)
Infecciones por VIH , Células T Auxiliares Foliculares , Citocinas/metabolismo , Centro Germinal/metabolismo , Infecciones por VIH/metabolismo , Humanos , Interleucina-4/metabolismo , Viremia
14.
Nat Commun ; 13(1): 4855, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982045

RESUMEN

To better understand the development of SARS-CoV-2-specific immunity over time, a detailed evaluation of humoral and cellular responses is required. Here, we characterize anti-Spike (S) IgA and IgG in a representative population-based cohort of 431 SARS-CoV-2-infected individuals up to 217 days after diagnosis, demonstrating that 85% develop and maintain anti-S responses. In a subsample of 64 participants, we further assess anti-Nucleocapsid (N) IgG, neutralizing antibody activity, and T cell responses to Membrane (M), N, and S proteins. In contrast to S-specific antibody responses, anti-N IgG levels decline substantially over time and neutralizing activity toward Delta and Omicron variants is low to non-existent within just weeks of Wildtype SARS-CoV-2 infection. Virus-specific T cells are detectable in most participants, albeit more variable than antibody responses. Cluster analyses of the co-evolution of antibody and T cell responses within individuals identify five distinct trajectories characterized by specific immune patterns and clinical factors. These findings demonstrate the relevant heterogeneity in humoral and cellular immunity to SARS-CoV-2 while also identifying consistent patterns where antibody and T cell responses may work in a compensatory manner to provide protection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G , Glicoproteína de la Espiga del Coronavirus
15.
PLoS Pathog ; 18(7): e1010673, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35788752

RESUMEN

The limited development of broadly neutralizing antibodies (BnAbs) during HIV infection is classically attributed to an inadequate B-cell help brought by functionally impaired T follicular helper (Tfh) cells. However, the determinants of Tfh-cell functional impairment and the signals contributing to this condition remain elusive. In the present study, we showed that PD-L1 is incorporated within HIV virions through an active mechanism involving p17 HIV matrix protein. We subsequently showed that in vitro produced PD-L1high but not PD-L1low HIV virions, significantly reduced Tfh-cell proliferation and IL-21 production, ultimately leading to a decreased of IgG1 secretion from GC B cells. Interestingly, Tfh-cell functions were fully restored in presence of anti-PD-L1/2 blocking mAbs treatment, demonstrating that the incorporated PD-L1 proteins were functionally active. Taken together, the present study unveils an immunovirological mechanism by which HIV specifically exploits the regulatory potential of PD-L1 to suppress the immune system during the course of HIV infection.


Asunto(s)
Infecciones por VIH , Linfocitos T Colaboradores-Inductores , Linfocitos B , Humanos , Células T Auxiliares Foliculares , Virión
16.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35879526

RESUMEN

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Microscopía por Crioelectrón , Epítopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral
17.
Nat Rev Drug Discov ; 21(9): 676-696, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35725925

RESUMEN

Monoclonal antibodies (mAbs) are appealing as potential therapeutics and prophylactics for viral infections owing to characteristics such as their high specificity and their ability to enhance immune responses. Furthermore, antibody engineering can be used to strengthen effector function and prolong mAb half-life, and advances in structural biology have enabled the selection and optimization of potent neutralizing mAbs through identification of vulnerable regions in viral proteins, which can also be relevant for vaccine design. The COVID-19 pandemic has stimulated extensive efforts to develop neutralizing mAbs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with several mAbs now having received authorization for emergency use, providing not just an important component of strategies to combat COVID-19 but also a boost to efforts to harness mAbs in therapeutic and preventive settings for other infectious diseases. Here, we describe advances in antibody discovery and engineering that have led to the development of mAbs for use against infections caused by viruses including SARS-CoV-2, respiratory syncytial virus (RSV), Ebola virus (EBOV), human cytomegalovirus (HCMV) and influenza. We also discuss the rationale for moving from empirical to structure-guided strategies in vaccine development, based on identifying optimal candidate antigens and vulnerable regions within them that can be targeted by antibodies to result in a strong protective immune response.


Asunto(s)
COVID-19 , Virosis , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , Humanos , Pandemias/prevención & control , SARS-CoV-2 , Virosis/prevención & control
18.
Sci Rep ; 12(1): 9189, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654865

RESUMEN

Determining disease activity in systemic lupus erythematosus (SLE) patients is challenging and limited by the lack of reliable biomarkers. Abnormally activated B cells play a key role in the pathogenesis of SLE, but their measure in clinical practice is currently not recommended. Here, we studied peripheral B cells to identify a valid biomarker. We analyzed peripheral B cells in a discovery cohort of 30 SLE patients compared to 30 healthy controls (HC) using mass cytometry and unsupervised clustering analysis. The relevant B cell populations were subsequently studied by flow cytometry in a validation cohort of 63 SLE patients, 28 autoimmune diseases controls and 39 HC. Our data show an increased frequency of B cell populations with activated phenotype in SLE compared to healthy and autoimmune diseases controls. These cells uniformly lacked the expression of CD21 and CD27. Measurement of CD21-CD27- B cells in the blood identified patients with active disease and their frequency correlated with disease severity. Interestingly, we did not observe an increase in the frequency of CD21-CD27- B cells in patients with clinically inactive disease but with elevated conventional biomarkers (anti-dsDNA and complement levels). Accordingly, measurement of CD21-CD27- B cells represents a robust and easily accessible biomarker to assess the activity of the disease in SLE patients.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Linfocitos B , Biomarcadores , Proteínas del Sistema Complemento , Humanos , Recuento de Linfocitos
19.
Front Immunol ; 13: 843059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603218

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of unknown etiology, linked to alterations in both the innate and the adaptive immune system. Due to the heterogeneity of the clinical presentation, the diagnosis of SLE remains complicated and is often made years after the first symptoms manifest, delaying treatment, and worsening the prognosis. Several studies have shown that signaling lymphocytic activation molecule family (SLAMF) receptors are aberrantly expressed and dysfunctional in SLE immune cells, contributing to the altered cellular function observed in these patients. The aim of this study was to determine whether altered co-/expression of SLAMF receptors on peripheral blood mononuclear cells (PBMC) identifies SLE characteristic cell populations. To this end, single cell mass cytometry and bioinformatic analysis were exploited to compare SLE patients to healthy and autoimmune diseases controls. First, the expression of each SLAMF receptor on all PBMC populations was investigated. We observed that SLAMF1+ B cells (referred to as SLEB1) were increased in SLE compared to controls. Furthermore, the frequency of SLAMF4+ monocytes and SLAMF4+ NK were inversely correlated with disease activity, whereas the frequency SLAMF1+ CD4+ TDEM cells were directly correlated with disease activity. Consensus clustering analysis identified two cell clusters that presented significantly increased frequency in SLE compared to controls: switch memory B cells expressing SLAMF1, SLAMF3, SLAMF5, SLAMF6 (referred to as SLESMB) and circulating T follicular helper cells expressing the same SLAMF receptors (referred to as SLEcTFH). Finally, the robustness of the identified cell populations as biomarkers for SLE was evaluated through ROC curve analysis. The combined measurement of SLEcTFH and SLEB1 or SLESMB cells identified SLE patients in 90% of cases. In conclusion, this study identified an immune signature for SLE based on the expression of SLAMF receptors on PBMC, further highlighting the involvement of SLAMF receptors in the pathogenesis of SLE.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Linfocitos B , Linfocitos T CD4-Positivos/metabolismo , Humanos , Leucocitos Mononucleares/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo
20.
JAMA Oncol ; 8(5): e220446, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35271706

RESUMEN

Importance: There are limited comparative data on the durability of neutralizing antibody (nAb) responses elicited by messenger RNA (mRNA) vaccines against the SARS-CoV-2 variants of concern (VOCs) in immunocompromised patients and healthy controls. Objective: To assess the humoral responses after vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccines. Design, Setting, and Participants: In this prospective, longitudinal monocentric comparative effectiveness study conducted at the Lausanne University Hospital, binding IgG anti-spike antibody and nAb levels were measured at 1 week, 1 month, 3 months, and 6 months after vaccination with mRNA-1273 (24.6% of participants) or BNT162b2 (75.3% of participants). Interventions: All participants received 2 doses of either mRNA-1273 or BNT162b2 vaccines 4 to 6 weeks apart. Main Outcomes and Measures: The primary outcome of the study was the persistence of nAb responses against the original, nonvariant SARS-CoV-2 (2019-nCoV) and different VOCs at 6 months after vaccination. Key secondary outcomes were associations of the type of mRNA vaccine, the underlying disease, and the treatment with the response to vaccination. Results: Among the 841 participants enrolled between January 14 and August 8, 2021, the patient population comprised 637 participants (mean [SD] age, 61.8 [13.7] years; 386 [60.6%] female), and the healthy control population comprised 204 participants (mean [SD] age, 45.9 [12.0] years; 144 [70.6%] female). There were 399 patients with solid cancers, 101 with hematologic cancers, 38 with solid organ transplants, 99 with autoimmune diseases, and 204 healthy controls. More than 15 000 nAb determinations were performed against the original, nonvariant 2019-nCoV and the Alpha, Beta, Gamma, and Delta variants. The proportions of nAbs and their titers decreased in all study groups at 6 months after vaccination, with the greatest decreases for the Beta and Delta variants. For Beta, the proportion decreased to a median (SE) of 39.2% (5.5%) in those with hematologic cancers, 44.8% (2.7%) in those with solid cancers, 23.1% (8.3%) in those with solid organ transplants, and 22.7% (4.8%) in those with autoimmune diseases compared with 52.1% (4.2%) in healthy controls. For Delta, the proportions decreased to 41.8% (5.6%) in participants with hematologic cancer, 51.9% (2.7%) in those with solid cancers, 26.9% (8.7%) in those with solid organ transplants, and 30.7% (5.3%) in those with autoimmune diseases compared with 56.9% (4.1%) healthy controls. Neutralizing antibody titers decreased 3.5- to 5-fold between month 1 and month 6, and the estimated duration of response was greater and more durable among those participants vaccinated with mRNA-1273. In participants with solid cancers, the estimated duration of nAbs against the Beta variant was 221 days with mRNA-1273 and 146 days with BNT162b2, and against the Delta variant, it was 226 days with mRNA-1273 and 161 with BNT162b2. The estimated duration of nAbs in participants with hematologic cancers was 113 and 127 days against Beta and Delta variants, respectively. Conclusions and Relevance: This comparative effectiveness study suggests that approximately half of patients with hematologic cancers and solid cancers, about 70% of patients with solid organ transplants or autoimmune diseases, and 40% of healthy controls have lost nAbs against the circulating VOCs at 6 months after vaccination. These findings may be helpful for developing the best boosting vaccination schedule especially in immunocompromised patients.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Neoplasias Hematológicas , Neoplasias , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Femenino , Humanos , Huésped Inmunocomprometido , Inmunoglobulina G , Masculino , Persona de Mediana Edad , Estudios Prospectivos , ARN Mensajero , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...