Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 535(7613): 542-6, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27437584

RESUMEN

The transition from fins to limbs was an important terrestrial adaptation, but how this crucial evolutionary shift arose developmentally is unknown. Current models focus on the distinct roles of the apical ectodermal ridge (AER) and the signaling molecules that it secretes during limb and fin outgrowth. In contrast to the limb AER, the AER of the fin rapidly transitions into the apical fold and in the process shuts off AER-derived signals that stimulate proliferation of the precursors of the appendicular skeleton. The differing fates of the AER during fish and tetrapod development have led to the speculation that fin-fold formation was one of the evolutionary hurdles to the AER-dependent expansion of the fin mesenchyme required to generate the increased appendicular structure evident within limbs. Consequently, a heterochronic shift in the AER-to-apical-fold transition has been postulated to be crucial for limb evolution. The ability to test this model has been hampered by a lack of understanding of the mechanisms controlling apical fold induction. Here we show that invasion by cells of a newly identified somite-derived lineage into the AER in zebrafish regulates apical fold induction. Ablation of these cells inhibits apical fold formation, prolongs AER activity and increases the amount of fin bud mesenchyme, suggesting that these cells could provide the timing mechanism proposed in Thorogood's clock model of the fin-to-limb transition. We further demonstrate that apical-fold inducing cells are progressively lost during gnathostome evolution;the absence of such cells within the tetrapod limb suggests that their loss may have been a necessary prelude to the attainment of limb-like structures in Devonian sarcopterygian fish.


Asunto(s)
Aletas de Animales/embriología , Aletas de Animales/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Somitos/embriología , Somitos/metabolismo , Pez Cebra/embriología , Animales , Evolución Biológica , Linaje de la Célula , Ectodermo/citología , Femenino , Esbozos de los Miembros/citología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/metabolismo , Somitos/citología
2.
Development ; 140(13): 2703-10, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720042

RESUMEN

Transcription is an essential component of basic cellular and developmental processes. However, early embryonic development occurs in the absence of transcription and instead relies upon maternal mRNAs and proteins deposited in the egg during oocyte maturation. Although the early zebrafish embryo is competent to transcribe exogenous DNA, factors present in the embryo maintain genomic DNA in a state that is incompatible with transcription. The cell cycles of the early embryo titrate out these factors, leading to zygotic transcription initiation, presumably in response to a change in genomic DNA chromatin structure to a state that supports transcription. To understand the molecular mechanisms controlling this maternal to zygotic transition, it is important to distinguish between the maternal and zygotic transcriptomes during this period. Here we use exome sequencing and RNA-seq to achieve such discrimination and in doing so have identified the first zygotic genes to be expressed in the embryo. Our work revealed different profiles of maternal mRNA post-transcriptional regulation prior to zygotic transcription initiation. Finally, we demonstrate that maternal mRNAs are required for different modes of zygotic transcription initiation, which is not simply dependent on the titration of factors that maintain genomic DNA in a transcriptionally incompetent state.


Asunto(s)
Transcriptoma/genética , Pez Cebra/genética , Animales , Exoma/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , ARN Mensajero/genética , Cigoto/metabolismo
3.
Methods ; 62(3): 197-206, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23624102

RESUMEN

The zebrafish mutation project (ZMP) aims to generate a loss of function allele for every protein-coding gene, but importantly to also characterise the phenotypes of these alleles during the first five days of development. Such a large-scale screen requires a systematic approach both to identifying phenotypes, and also to linking those phenotypes to specific mutations. This phenotyping pipeline simultaneously assesses the consequences of multiple alleles in a two-step process. First, mutations that do not produce a visible phenotype during the first five days of development are identified, while a second round of phenotyping focuses on detailed analysis of those alleles that are suspected to cause a phenotype. Allele-specific PCR single nucleotide polymorphism (SNP) assays are used to genotype F2 parents and individual F3 fry for mutations known to be present in the F1 founder. With this method specific phenotypes can be linked to induced mutations. In addition a method is described for cryopreserving sperm samples of mutagenised males and their subsequent use for in vitro fertilisation to generate F2 families for phenotyping. Ultimately this approach will lead to the functional annotation of the zebrafish genome, which will deepen our understanding of gene function in development and disease.


Asunto(s)
Estudios de Asociación Genética , Genoma , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Pez Cebra/genética , Alelos , Animales , Criopreservación , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Técnicas de Genotipaje , Patrón de Herencia , Masculino , Anotación de Secuencia Molecular , Espermatozoides/fisiología
4.
Nature ; 496(7446): 494-7, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23594742

RESUMEN

Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.


Asunto(s)
Genoma/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Alelos , Animales , Exoma/genética , Femenino , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Genómica , Masculino , Anotación de Secuencia Molecular , Mutagénesis , Mutación/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Pez Cebra/fisiología , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA