Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8339, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097584

RESUMEN

Genome duplication is essential for the proliferation of cellular life and this process is generally initiated by dedicated replication proteins at chromosome origins. In bacteria, DNA replication is initiated by the ubiquitous DnaA protein, which assembles into an oligomeric complex at the chromosome origin (oriC) that engages both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) to promote DNA duplex opening. However, the mechanism of DnaA specifically opening a replication origin was unknown. Here we show that Bacillus subtilis DnaAATP assembles into a continuous oligomer at the site of DNA melting, extending from a dsDNA anchor to engage a single DNA strand. Within this complex, two nucleobases of each ssDNA binding motif (DnaA-trio) are captured within a dinucleotide binding pocket created by adjacent DnaA proteins. These results provide a molecular basis for DnaA specifically engaging the conserved sequence elements within the bacterial chromosome origin basal unwinding system (BUS).


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/metabolismo , Origen de Réplica , Bacterias/genética , ADN , ADN de Cadena Simple/genética , ADN Bacteriano/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo
2.
Nucleic Acids Res ; 51(9): 4322-4340, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37093985

RESUMEN

Genome replication is a fundamental biological activity shared by all organisms. Chromosomal replication proceeds bidirectionally from origins, requiring the loading of two helicases, one for each replisome. However, the molecular mechanisms underpinning helicase loading at bacterial chromosome origins (oriC) are unclear. Here we investigated the essential DNA replication initiation protein DnaD in the model organism Bacillus subtilis. A set of DnaD residues required for ssDNA binding was identified, and photo-crosslinking revealed that this ssDNA binding region interacts preferentially with one strand of oriC. Biochemical and genetic data support the model that DnaD recognizes a new single-stranded DNA (ssDNA) motif located in oriC, the DnaD Recognition Element (DRE). Considered with single particle cryo-electron microscopy (cryo-EM) imaging of DnaD, we propose that the location of the DRE within oriC orchestrates strand-specific recruitment of helicase during DNA replication initiation. These findings significantly advance our mechanistic understanding of bidirectional replication from a bacterial chromosome origin.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ADN , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/genética , Cromosomas Bacterianos/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Origen de Réplica
3.
Nucleic Acids Res ; 51(9): 4302-4321, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36416272

RESUMEN

Bidirectional DNA replication from a chromosome origin requires the asymmetric loading of two helicases, one for each replisome. Our understanding of the molecular mechanisms underpinning helicase loading at bacterial chromosome origins is incomplete. Here we report both positive and negative mechanisms for directing helicase recruitment in the model organism Bacillus subtilis. Systematic characterization of the essential initiation protein DnaD revealed distinct protein interfaces required for homo-oligomerization, interaction with the master initiator protein DnaA, and interaction with the helicase co-loader protein DnaB. Informed by these properties of DnaD, we went on to find that the developmentally expressed repressor of DNA replication initiation, SirA, blocks the interaction between DnaD and DnaA, thereby restricting helicase recruitment from the origin during sporulation to inhibit further initiation events. These results advance our understanding of the mechanisms underpinning DNA replication initiation in B. subtilis, as well as guiding the search for essential cellular activities to target for antimicrobial drug design.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , ADN Helicasas , Esporas Bacterianas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , AdnB Helicasas/genética , AdnB Helicasas/metabolismo , Origen de Réplica , Esporas Bacterianas/metabolismo
4.
Sci Rep ; 12(1): 3352, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233071

RESUMEN

Oilseed rape (Brassica napus) is an important crop that is cultivated for the oil (mainly triacylglycerol; TAG) it produces in its seeds. TAG synthesis is controlled mainly by key enzymes in the Kennedy pathway, such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidate acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) but can also be produced from phosphoglycerides such as phosphatidylcholine (PC) by the activity of the enzyme phospholipid: diacylglycerol acyltransferase (PDAT). To evaluate the potential for these enzymes to alter oil yields or composition, we analysed transgenic B. napus lines which overexpressed GPAT, LPAT or PDAT using heterologous transgenes from Arabidopsis and Nasturtium and examined lipid profiles and changes in gene expression in these lines compared to WT. Distinct changes in PC and TAG abundance and spatial distribution in embryonic tissues were observed in some of the transgenic lines, together with altered expression of genes involved generally in acyl-lipid metabolism. Overall our results show that up-regulation of these key enzymes differentially affects lipid composition and distribution as well as lipid-associated gene expression, providing important information which could be used to improve crop properties by metabolic engineering.


Asunto(s)
Arabidopsis , Brassica napus , Aciltransferasas/genética , Aciltransferasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Expresión Génica , Metabolismo de los Lípidos/genética , Semillas/genética , Semillas/metabolismo , Triglicéridos/metabolismo
5.
Biochem J ; 479(6): 805-823, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298586

RESUMEN

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Asunto(s)
Brassica napus , Brassica napus/genética , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos , Fosfolípidos/metabolismo , Semillas/metabolismo
6.
New Phytol ; 224(2): 700-711, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400160

RESUMEN

Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT. We estimated the flux control coefficient of LPAAT in a whole plant context by deriving a relationship between it and overall lipid accumulation, given that this process is a exponential. Increasing LPAAT activity resulted in greater TAG accumulation in seeds of between 25% and 29%; altered fatty acid distributions in seed lipids (particularly those of the Kennedy pathway); and a redistribution of label from 14 C-glycerol between phosphoglycerides. Greater LPAAT activity in seeds led to an increase in TAG content despite its low intrinsic flux control coefficient on account of the exponential nature of lipid accumulation that amplifies the effect of the small flux increment achieved by increasing its activity. We have also developed a novel application of metabolic control analysis likely to have broad application as it determines the in planta flux control that a single component has upon accumulation of storage products.


Asunto(s)
Aciltransferasas/metabolismo , Brassica napus/enzimología , Semillas/química , Triglicéridos/metabolismo , Aciltransferasas/genética , Brassica napus/metabolismo , ADN de Plantas , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente , Triglicéridos/química , Tropaeolum/enzimología , Tropaeolum/genética
7.
J Biol Chem ; 291(3): 1137-47, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26601946

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable plants to recognize and respond to pathogen attack. Previously, we demonstrated that the Rx1 NLR of potato is able to bind and bend DNA in vitro. DNA binding in situ requires its genuine activation following pathogen perception. However, it is unknown whether other NLR proteins are also able to bind DNA. Nor is it known how DNA binding relates to the ATPase activity intrinsic to NLR switch function required to immune activation. Here we investigate these issues using a recombinant protein corresponding to the N-terminal coiled-coil and nucleotide-binding domain regions of the I-2 NLR of tomato. Wild type I-2 protein bound nucleic acids with a preference of ssDNA ≈ dsDNA > ssRNA, which is distinct from Rx1. I-2 induced bending and melting of DNA. Notably, ATP enhanced DNA binding relative to ADP in the wild type protein, the null P-loop mutant K207R, and the autoactive mutant S233F. DNA binding was found to activate the intrinsic ATPase activity of I-2. Because DNA binding by I-2 was decreased in the presence of ADP when compared with ATP, a cyclic mechanism emerges; activated ATP-associated I-2 binds to DNA, which enhances ATP hydrolysis, releasing ADP-bound I-2 from the DNA. Thus DNA binding is a general property of at least a subset of NLR proteins, and NLR activation is directly linked to its activity at DNA.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/agonistas , Modelos Moleculares , Proteínas de Transporte de Nucleótidos/agonistas , Proteínas de Plantas/agonistas , Proteínas/agonistas , Solanum lycopersicum/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Hidrólisis , Proteínas Repetidas Ricas en Leucina , Solanum lycopersicum/enzimología , Solanum lycopersicum/inmunología , Mutación , Proteínas de Transporte de Nucleótidos/química , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Inmunidad de la Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 290(41): 24945-60, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26306038

RESUMEN

Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.


Asunto(s)
ADN/química , ADN/metabolismo , Leucina , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología , Solanum tuberosum/metabolismo , Solanum tuberosum/virología , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Enfermedades de las Plantas/virología , Estructura Terciaria de Proteína , Solanum tuberosum/inmunología , Especificidad por Sustrato
9.
J Biol Chem ; 287(6): 4023-32, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22157756

RESUMEN

Plant resistance proteins (R-proteins) are key components of the plant immune system activated in response to a plethora of different pathogens. R-proteins are P-loop NTPase superfamily members, and current models describe their main function as ATPases in defense signaling pathways. Here we show that a subset of R-proteins have evolved a new function to combat pathogen infection. This subset of R-proteins possesses a nucleotide phosphatase activity in the nucleotide-binding domain. Related R-proteins that fall in the same phylogenetic clade all show the same nucleotide phosphatase activity indicating a conserved function within at least a subset of R-proteins. R-protein nucleotide phosphatases catalyze the production of nucleoside from nucleotide with the nucleotide monophosphate as the preferred substrate. Mutation of conserved catalytic residues substantially reduced activity consistent with the biochemistry of P-loop NTPases. Kinetic analysis, analytical gel filtration, and chemical cross-linking demonstrated that the nucleotide-binding domain was active as a multimer. Nuclear magnetic resonance and nucleotide analogues identified the terminal phosphate bond as the target of a reaction that utilized a metal-mediated nucleophilic attack by water on the phosphoester. In conclusion, we have identified a group of R-proteins with a unique function. This biochemical activity appears to have co-evolved with plants in signaling pathways designed to resist pathogen attack.


Asunto(s)
Resistencia a la Enfermedad/fisiología , Nucleósido-Trifosfatasa/química , Oryza/enzimología , Enfermedades de las Plantas , Proteínas de Plantas/química , Transducción de Señal/fisiología , Arabidopsis/enzimología , Arabidopsis/genética , Cinética , Mutación , Resonancia Magnética Nuclear Biomolecular , Nucleósido-Trifosfatasa/genética , Nucleósido-Trifosfatasa/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Zea mays/enzimología , Zea mays/genética
10.
Mol Biosyst ; 5(5): 458-71, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19381361

RESUMEN

The natural retinoid, all-trans retinoic acid (ATRA), is widely used to direct the in vitro differentiation of stem cells. However, substantial degradation and isomerisation of ATRA in response to UV-vis light has serious implications with regard to experimental reproducibility and standardisation. We present the novel application of proteomic biomarker profiling technology to stem cell lysates to rapidly compare the differentiation effects of ATRA with those of two stable synthetic retinoid analogues, EC19 and EC23, which have both been shown to induce differentiation in the embryonal carcinoma cell line TERA2.cl.SP12. MALDI-TOF MS (matrix-assisted laser desorption ionisation time-of-flight mass spectrometry) protein profiles support previous findings into the functional relationships between these compounds in the TERA2.cl.SP12 line. Subsequent analysis of protein peak data enabled the semi-quantitative comparison of individual retinoid-responsive proteins. We have used ion exchange chromatographic protein separation to enrich for retinoid-inducible proteins, thereby facilitating their identification from SDS-PAGE gels. The cellular retinoid-responsive proteins CRABP-I, CRABP-II, and CRBP-I were up-regulated in response to ATRA and EC23, indicating a bona fide retinoid pathway response to the synthetic compound. In addition, the actin filament regulatory protein profilin-1 and the microtubule regulator stathmin were also elevated following treatment with both ATRA and EC23. The up-regulation of profilin-1 and stathmin associated with retinoid-induced neural differentiation correlates with their known roles in cytoskeletal reorganisation during axonal development. Immunological analysis via western blotting confirmed the identification of CRABP-I, profilin-1 and stathmin, and supported their observed regulation in response to the retinoid treatments.


Asunto(s)
Benzoatos/farmacología , Proteómica/métodos , Células Madre/metabolismo , Tetrahidronaftalenos/farmacología , Tretinoina/farmacología , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Células Madre/efectos de los fármacos , Tretinoina/análogos & derivados
11.
J Biol Chem ; 284(2): 784-91, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19008230

RESUMEN

Carbon dioxide is fundamental to the physiology of all organisms. There is considerable interest in the precise molecular mechanisms that organisms use to directly sense CO(2). Here we demonstrate that a mammalian recombinant G-protein-activated adenylyl cyclase and the related Rv1625c adenylyl cyclase of Mycobacterium tuberculosis are specifically stimulated by CO(2). Stimulation occurred at physiological concentrations of CO(2) through increased k(cat). CO(2) increased the affinity of enzyme for metal co-factor, but contact with metal was not necessary as CO(2) interacted directly with apoenzyme. CO(2) stimulated the activity of both G-protein-regulated adenylyl cyclases and Rv1625c in vivo. Activation of G-protein regulated adenylyl cyclases by CO(2) gave a corresponding increase in cAMP-response element-binding protein (CREB) phosphorylation. Comparison of the responses of the G-protein regulated adenylyl cyclases and the molecularly, and biochemically distinct mammalian soluble adenylyl cyclase revealed that whereas G-protein-regulated enzymes are responsive to CO(2), the soluble adenylyl cyclase is responsive to both CO(2) and bicarbonate ion. We have, thus, identified a signaling enzyme by which eukaryotes can directly detect and respond to fluctuating CO(2).


Asunto(s)
Adenilil Ciclasas/metabolismo , Dióxido de Carbono/farmacología , Proteínas de Unión al GTP/metabolismo , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Ratas , Alineación de Secuencia
12.
J Cell Sci ; 119(Pt 15): 3227-37, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16847052

RESUMEN

Cell division depends on the fine control of both microtubule dynamics and microtubule organisation. The microtubule bundling protein MAP65 is a ;midzone MAP' essential for the integrity of the anaphase spindle and cell division. Arabidopsis thaliana MAP65-1 (AtMAP65-1) binds and bundles microtubules by forming 25 nm cross-bridges. Moreover, as AtMAP65-1 bundles microtubules in interphase, anaphase and telophase but does not bind microtubules in prophase or metaphase, its activity through the cell cycle must be under tight control. Here we show that AtMAP65-1 is hyperphosphorylated during prometaphase and metaphase and that CDK and MAPK are involved in this phosphorylation. This phosphorylation inhibits AtMAP65-1 activity. Expression of non-phosphorylatable AtMAP65-1 has a negative effect on mitotic progression resulting in excessive accumulation of microtubules in the metaphase spindle midzone causing a delay in mitosis. We conclude that normal metaphase spindle organisation and the transition to anaphase is dependent on inactivation of AtMAP65-1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ciclo Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Quinasas Ciclina-Dependientes/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Huso Acromático/metabolismo , Nicotiana/citología
13.
Plant Cell ; 16(8): 2035-47, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273298

RESUMEN

The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a single isoform, AtMAP65-1, and examined its effect on the dynamics of mammalian microtubules. We show that recombinant AtMAP65-1 does not promote polymerization and does not stabilize microtubules against cold-induced microtubule depolymerization. However, we show that it does induce microtubule bundling in vitro and that this protein forms 25-nm cross-bridges between microtubules. We further demonstrate that the microtubule binding region resides in the C-terminal half of the protein and that Ala409 and Ala420 are essential for the interaction with microtubules. Ala420 is a conserved amino acid in the AtMAP65 family and is mutated to Val in the cytokinesis-defective mutant pleiade-4 of the AtMAP65-3/PLEIADE gene. We show that AtMAP65-1 can form dimers and that a region in the N terminus is responsible for this activity. Neither the microtubule binding region nor the dimerization region alone could induce microtubule bundling, strongly suggesting that dimerization is necessary to produce the microtubule cross-bridges. In vivo, AtMAP65-1 is ubiquitously expressed both during the cell cycle and in all plant organs and tissues with the exception of anthers and petals. Moreover, using an antiserum raised to AtMAP65-1, we show that AtMAP65-1 binds microtubules at specific stages of the cell cycle.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Secuencia de Aminoácidos , Animales , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Ciclo Celular/fisiología , Células Cultivadas , Dimerización , Regulación de la Expresión Génica de las Plantas , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Porcinos , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...