Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Care ; 67(2): 201-208, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34413210

RESUMEN

BACKGROUND: High-dose (≥ 80 ppm) inhaled nitric oxide (INO) has antimicrobial effects. We designed a trial to test the preventive effects of high-dose NO on coronavirus disease 2019 (COVID-19) in health care providers working with patients with COVID-19. The study was interrupted prematurely due to the introduction of COVID-19 vaccines for health care professionals. We thereby present data on safety and feasibility of breathing 160 ppm NO using 2 different NO sources, namely pressurized nitrogen/NO cylinders (INO) and electric NO (eNO) generators. METHODS: NO gas was inhaled at 160 ppm in air for 15 min twice daily, before and after each work shift, over 14 d by health care providers (NCT04312243). During NO administration, vital signs were continuously monitored. Safety was assessed by measuring transcutaneous methemoglobinemia (SpMet) and the inhaled nitrogen dioxide (NO2) concentration. RESULTS: Twelve healthy health care professionals received a collective total of 185 administrations of high-dose NO (160 ppm) for 15 min twice daily. One-hundred and seventy-one doses were delivered by INO and 14 doses by eNO. During NO administration, SpMet increased similarly in both groups (P = .82). Methemoglobin decreased in all subjects at 5 min after discontinuing NO administration. Inhaled NO2 concentrations remained between 0.70 ppm (0.63-0.79) and 0.75 ppm (0.67-0.83) in the INO group and between 0.74 ppm (0.68-0.78) and 0.88 ppm (0.70-0.93) in the eNO group. During NO administration, peripheral oxygen saturation and heart rate did not change. No adverse events occurred. CONCLUSIONS: This pilot study testing high-dose INO (160 ppm) for 15 min twice daily using eNO seems feasible and similarly safe when compared with INO.


Asunto(s)
COVID-19 , Óxido Nítrico , Administración por Inhalación , Vacunas contra la COVID-19 , Humanos , Saturación de Oxígeno , Proyectos Piloto , SARS-CoV-2
2.
J Intensive Care Med ; 36(8): 900-909, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33783269

RESUMEN

BACKGROUND: Right ventricular (RV) dysfunction is common and associated with worse outcomes in patients with coronavirus disease 2019 (COVID-19). In non-COVID-19 acute respiratory distress syndrome, RV dysfunction develops due to pulmonary hypoxic vasoconstriction, inflammation, and alveolar overdistension or atelectasis. Although similar pathogenic mechanisms may induce RV dysfunction in COVID-19, other COVID-19-specific pathology, such as pulmonary endothelialitis, thrombosis, or myocarditis, may also affect RV function. We quantified RV dysfunction by echocardiographic strain analysis and investigated its correlation with disease severity, ventilatory parameters, biomarkers, and imaging findings in critically ill COVID-19 patients. METHODS: We determined RV free wall longitudinal strain (FWLS) in 32 patients receiving mechanical ventilation for COVID-19-associated respiratory failure. Demographics, comorbid conditions, ventilatory parameters, medications, and laboratory findings were extracted from the medical record. Chest imaging was assessed to determine the severity of lung disease and the presence of pulmonary embolism. RESULTS: Abnormal FWLS was present in 66% of mechanically ventilated COVID-19 patients and was associated with higher lung compliance (39.6 vs 29.4 mL/cmH2O, P = 0.016), lower airway plateau pressures (21 vs 24 cmH2O, P = 0.043), lower tidal volume ventilation (5.74 vs 6.17 cc/kg, P = 0.031), and reduced left ventricular function. FWLS correlated negatively with age (r = -0.414, P = 0.018) and with serum troponin (r = 0.402, P = 0.034). Patients with abnormal RV strain did not exhibit decreased oxygenation or increased disease severity based on inflammatory markers, vasopressor requirements, or chest imaging findings. CONCLUSIONS: RV dysfunction is common among critically ill COVID-19 patients and is not related to abnormal lung mechanics or ventilatory pressures. Instead, patients with abnormal FWLS had more favorable lung compliance. RV dysfunction may be secondary to diffuse intravascular micro- and macro-thrombosis or direct myocardial damage. TRIAL REGISTRATION: National Institutes of Health #NCT04306393. Registered 10 March 2020, https://clinicaltrials.gov/ct2/show/NCT04306393.


Asunto(s)
COVID-19/complicaciones , Insuficiencia Respiratoria/virología , Disfunción Ventricular Derecha/virología , Adulto , Anciano , Enfermedad Crítica , Femenino , Ventrículos Cardíacos , Humanos , Masculino , Persona de Mediana Edad , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Índice de Severidad de la Enfermedad , Disfunción Ventricular Derecha/diagnóstico por imagen , Función Ventricular Derecha
3.
medRxiv ; 2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32511534

RESUMEN

Introduction: Severe acute respiratory syndrome due to novel Coronavirus (SARS-CoV-2) related infection (COVID-19) is characterized by severe ventilation perfusion mismatch leading to refractory hypoxemia. To date, there is no specific treatment available for COVID-19. Nitric oxide is a selective pulmonary vasodilator gas used as a rescue therapy in refractory hypoxemia due to acute respiratory distress syndrome (ARDS). In has also shown invitro and clinical evidence that inhaled nitric oxide gas (iNO) has antiviral activity against other strains of coronavirus. The primary aim of this study is to determine whether inhaled NO improves oxygenation in patients with hypoxic COVID-19. This is a multicenter randomized controlled trial with 1:1 individual allocation. Patients will be blinded to the treatment. Methods and analysis: Intubated patients admitted to the intensive care unit with confirmed SARS-CoV-2 infection and severe hypoxemia will be randomized to receive inhalation of NO (treatment group) or not (control group). Treatment will be stopped when patients are free from hypoxemia for more than 24 hours. The primary outcome evaluates levels of oxygenation between the two groups at 48 hours. Secondary outcomes include rate of survival rate at 28 and 90 days in the two groups, time to resolution of severe hypoxemia, time to achieve negativity of SARS-CoV-2 RT-PCR tests. Ethics and dissemination: The study protocol has been approved by the Investigational Review Board of Xijing Hospital (Xi'an, China) and by the Partners Human Research Committee (Boston, USA). Recruitment will start after approval of both IRBs and local IRBs at other enrolling centers. Results of this study will be published in scientific journals, presented at scientific meetings, reported through flyers and posters, and published on related website or media in combating against this widespread contagious disease. Trial registration: Clinicaltrials.gov. NCT04306393.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...