Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488007

RESUMEN

The lymphatic vascular system is gaining recognition for its multifaceted role and broad pathological significance. Once perceived as a mere conduit for interstitial fluid and immune cell transport, recent research has unveiled its active involvement in critical physiological processes and common diseases, including inflammation, autoimmune diseases, and atherosclerosis. Consequently, abnormal development or functionality of lymphatic vessels can result in serious health complications. Here, we discuss lymphatic malformations (LMs), which are localized lesions that manifest as fluid-filled cysts or extensive infiltrative lymphatic vessel overgrowth, often associated with debilitating, even life-threatening, consequences. Genetic causes of LMs have been uncovered, and several promising drug-based therapies are currently under investigation and will be discussed.


Asunto(s)
Anomalías Linfáticas , Vasos Linfáticos , Humanos , Anomalías Linfáticas/genética , Anomalías Linfáticas/terapia , Sistema Linfático
2.
Cell Rep ; 24(5): 1278-1289, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30067982

RESUMEN

MIG6 is an important tumor suppressor that binds to and negatively regulates epidermal growth factor receptor (EGFR). Here, we report an EGFR-independent function for MIG6 as an integral component of the cell cycle machinery. We found that depletion of MIG6 causes accelerated entry into and delayed exit from mitosis. This is due to premature and prolonged activation of CDK1, a key regulator of mitotic progression at the G2/M and meta- and anaphase transitions. Furthermore, MIG6 is required for inhibition of CDK1 upon DNA damage and subsequent G2/M cell cycle arrest. Mechanistically, we found that MIG6 depletion results in reduced phosphorylation of CDK1 on the inhibitory WEE1-targeted tyrosine-15 residue. MIG6 interacts with WEE1 and promotes its stability by interfering with the recruitment of the ßTrCP-SCF E3 ubiquitin ligase and consequent proteasomal degradation of WEE1. Our findings uncover a critical role of MIG6 in cell cycle progression that is likely to contribute to its potent tumor-suppressive properties.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fase G2 , Mitosis , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Daño del ADN , Células HEK293 , Humanos , Unión Proteica , Proteínas Tirosina Quinasas/metabolismo , Proteínas Supresoras de Tumor/genética
3.
J Biol Chem ; 288(46): 32922-31, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085293

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) holds promise for treatment of cancer due to its ability to selectively kill cancer cells while sparing normal cells. Ligand-induced translocation of TRAIL receptors (TRAIL-R) 1 and 2 (also called DR4 and DR5, respectively) into lipid raft membrane microdomains is required for TRAIL-induced cell death by facilitating receptor clustering and formation of the death-inducing signaling complex, yet the underlying regulatory mechanisms remain largely unknown. We show here that the non-receptor tyrosine kinase Ack1, previously implicated in the spatiotemporal regulation of the EGF receptor, is required for TRAIL-induced cell death in multiple epithelial cell lines. TRAIL triggered a transient up-regulation of Ack1 and its recruitment to lipid rafts along with TRAIL-R1/2. siRNA-mediated depletion of Ack1 disrupted TRAIL-induced accumulation of TRAIL-R1/2 in lipid rafts and efficient recruitment of caspase-8 to the death-inducing signaling complex. Pharmacological inhibition of Ack1 did not affect TRAIL-induced cell death, indicating that Ack1 acts in a kinase-independent manner to promote TRAIL-R1/2 accumulation in lipid rafts. These findings identify Ack1 as an essential player in the spatial regulation of TRAIL-R1/2.


Asunto(s)
Caspasa 8/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Microdominios de Membrana/metabolismo , Proteínas Tirosina Quinasas/biosíntesis , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Caspasa 8/genética , Muerte Celular/fisiología , Línea Celular Tumoral , Humanos , Microdominios de Membrana/genética , Transporte de Proteínas/fisiología , Proteínas Tirosina Quinasas/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regulación hacia Arriba/fisiología
4.
Dev Cell ; 23(3): 547-59, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22975324

RESUMEN

A fundamental aspect of epithelial homeostasis is the dependence on specific growth factors for cell survival, yet the underlying mechanisms remain obscure. We found an "inverse" mode of receptor tyrosine kinase signaling that directly links ErbB receptor inactivation to the induction of apoptosis. Upon ligand deprivation Mig6 dissociates from the ErbB receptor and binds to and activates the tyrosine kinase c-Abl to trigger p73-dependent apoptosis in mammary epithelial cells. Deletion of Errfi1 (encoding Mig6) and inhibition or RNAi silencing of c-Abl causes impaired apoptosis and luminal filling of mammary ducts. Mig6 activates c-Abl by binding to the kinase domain, which is prevented in the presence of epidermal growth factor (EGF) by Src family kinase-mediated phosphorylation on c-Abl-Tyr488. These results reveal a receptor-proximal switch mechanism by which Mig6 actively senses EGF deprivation to directly activate proapoptotic c-Abl. Our findings challenge the common belief that deprivation of growth factors induces apoptosis passively by lack of mitogenic signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Homeostasis , Proteínas Proto-Oncogénicas c-abl/metabolismo , Animales , Células Cultivadas , Células Epiteliales/citología , Receptores ErbB/antagonistas & inhibidores , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
5.
Hepatology ; 51(4): 1383-90, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20044804

RESUMEN

UNLABELLED: The mitogen-inducible gene-6 (mig-6) is a multi-adaptor protein implicated in the regulation of the HER family of receptor tyrosine kinases. We have reported recently that mig-6 is a negative regulator of epidermal growth factor receptor (EGFR)-dependent skin morphogenesis and tumor formation in vivo. In the liver, ablation of mig-6 leads to an increase in EGFR protein levels, suggesting that mig-6 is a negative regulator of EGFR function. In line with this observation, primary hepatocytes isolated from mig-6 knockout and wild-type control mice display sustained mitogenic signaling in response to EGF. In order to explore the role of mig-6 in the liver in vivo, we analyzed liver regeneration in mig-6 knockout and wild-type control mice. Interestingly, mig-6 knockout mice display enhanced hepatocyte proliferation in the initial phases after partial hepatectomy. This phenotype correlates with activation of endogenous EGFR signaling, predominantly through the protein kinase B pathway. In addition, mig-6 is an endogenous inhibitor of EGFR signaling and EGF-induced tumor cell migration in human liver cancer cell lines. Moreover, mig-6 is down-regulated in human hepatocellular carcinoma and this correlates with increased EGFR expression. CONCLUSION: Our data implicate mig-6 as a regulator of EGFR activity in hepatocytes and as a suppressor of EGFR signaling in human liver cancer.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Carcinoma Hepatocelular/patología , Receptores ErbB/fisiología , Hepatocitos/fisiología , Neoplasias Hepáticas/patología , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Proteínas Supresoras de Tumor
6.
Nat Cell Biol ; 8(10): 1084-94, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16964245

RESUMEN

Xenopus RINGO/Speedy (XRINGO) is a potent inducer of oocyte meiotic maturation that can directly activate Cdk1 and Cdk2. Here, we show that endogenous XRINGO protein accumulates transiently during meiosis I entry and then is downregulated. This tight regulation of XRINGO expression is the consequence of two interconnected mechanisms: processing and degradation. XRINGO processing involves recognition of at least three distinct phosphorylated recognition motifs by the SCF(betaTrCP) ubiquitin ligase, followed by proteasome-mediated limited degradation, resulting in an amino-terminal XRINGO fragment. XRINGO processing is directly stimulated by several kinases, including protein kinase A and glycogen synthase kinase-3beta, and may contribute to the maintenance of G2 arrest. On the other hand, XRINGO degradation after meiosis I is mediated by the ubiquitin ligase Siah-2, which probably requires phosphorylation of XRINGO on Ser 243 and may be important for the omission of S phase at the meiosis-I-meiosis-II transition in Xenopus oocytes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Fase G2 , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Meiosis , Oocitos/citología , Oocitos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Ligasas SKP Cullina F-box/metabolismo , Xenopus laevis
7.
Nat Med ; 12(5): 568-73, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16648858

RESUMEN

The growing number of recently identified negative feedback regulators of receptor tyrosine kinases (RTKs) highlights the importance of signal attenuation and modulation for correct signaling outcome. Mitogen-inducible gene 6 (Mig6 also known as RALT or Gene 33) is a multiadaptor protein thought to be involved in the regulation of RTK and stress signaling. Here, we show that deletion of the mouse gene encoding Mig6 (designated Errfi1, which stands for ERBB receptor feedback inhibitor 1) causes hyperactivation of endogenous epidermal growth factor receptor (EGFR) and sustained signaling through the mitogen-activated protein kinase (MAPK) pathway, resulting in overproliferation and impaired differentiation of epidermal keratinocytes. Furthermore, Errfi1-/- mice develop spontaneous tumors in various organs and are highly susceptible to chemically induced formation of skin tumors. A tumor-suppressive role for Mig6 is supported by our finding that MIG6 is downregulated in various human cancers. Inhibition of endogenous Egfr signaling with the Egfr inhibitor gefitinib (Iressa) or replacement of wild-type Egfr with the kinase-deficient protein encoded by the hypomorphic Egfr(wa2) allele completely rescued skin defects in Erffi1-/- mice. Carcinogen-induced tumors displayed by Errfi1-/- mice were highly sensitive to gefitinib. These results indicate that Mig6 is a specific negative regulator of Egfr signaling in skin morphogenesis and is a novel tumor suppressor of Egfr-dependent carcinogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores ErbB/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Morfogénesis , Neoplasias/metabolismo , Piel/crecimiento & desarrollo , Piel/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proliferación Celular , Gefitinib , Humanos , Péptidos y Proteínas de Señalización Intracelular , Queratinocitos/citología , Queratinocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Quinazolinas/metabolismo , Piel/citología , Piel/metabolismo
8.
J Cell Biol ; 171(2): 337-48, 2005 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-16247031

RESUMEN

Hepatocyte growth factor (HGF)/Met signaling controls cell migration, growth and differentiation in several embryonic organs and is implicated in human cancer. The physiologic mechanisms that attenuate Met signaling are not well understood. Here we report a mechanism by which mitogen-inducible gene 6 (Mig6; also called Gene 33 and receptor-associated late transducer) negatively regulates HGF/Met-induced cell migration. The effect is observed by Mig6 overexpression and is reversed by Mig6 small interfering RNA knock-down experiments; this indicates that endogenous Mig6 is part of a mechanism that inhibits Met signaling. Mig6 functions in cells of hepatic origin and in neurons, which suggests a role for Mig6 in different cell lineages. Mechanistically, Mig6 requires an intact Cdc42/Rac interactive binding site to exert its inhibitory action, which suggests that Mig6 acts, at least in part, distally from Met, possibly by inhibiting Rho-like GTPases. Because Mig6 also is induced by HGF stimulation, our results suggest that Mig6 is part of a negative feedback loop that attenuates Met functions in different contexts and cell types.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/antagonistas & inhibidores , Neuritas/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Movimiento Celular/fisiología , Regulación de la Expresión Génica , Factor de Crecimiento de Hepatocito/metabolismo , Factor de Crecimiento de Hepatocito/farmacología , Péptidos y Proteínas de Señalización Intracelular , Ratones , Neuritas/metabolismo , Conformación Proteica , ARN Mensajero/genética , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...