Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetologia ; 55(10): 2682-2692, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22820510

RESUMEN

AIMS/HYPOTHESIS: Activation of the G protein-coupled receptor (GPR)40 by long-chain fatty acids potentiates glucose-stimulated insulin secretion (GSIS) from pancreatic beta cells, and GPR40 agonists are in clinical development for type 2 diabetes therapy. GPR40 couples to the G protein subunit Gα(q/11) but the signalling cascade activated downstream is unknown. This study aimed to determine the mechanisms of GPR40-dependent potentiation of GSIS by fatty acids. METHODS: Insulin secretion in response to glucose, oleate or diacylglycerol (DAG) was assessed in dynamic perifusions and static incubations in islets from wild-type (WT) and Gpr40 (-/-) mice. Depolymerisation of filamentous actin (F-actin) was visualised by phalloidin staining and epifluorescence. Pharmacological and molecular approaches were used to ascertain the roles of protein kinase D (PKD) and protein kinase C delta in GPR40-mediated potentiation of GSIS. RESULTS: Oleate potentiates the second phase of GSIS, and this effect is largely dependent upon GPR40. Accordingly, oleate induces rapid F-actin remodelling in WT but not in Gpr40 (-/-) islets. Exogenous DAG potentiates GSIS in both WT and Gpr40 (-/-) islets. Oleate induces PKD phosphorylation at residues Ser-744/748 and Ser-916 in WT but not Gpr40 (-/-) islets. Importantly, oleate-induced F-actin depolymerisation and potentiation of GSIS are lost upon pharmacological inhibition of PKD1 or deletion of Prkd1. CONCLUSIONS/INTERPRETATION: We conclude that the signalling cascade downstream of GPR40 activation by fatty acids involves activation of PKD1, F-actin depolymerisation and potentiation of second-phase insulin secretion. These results provide important information on the mechanisms of action of GPR40, a novel drug target for type 2 diabetes.


Asunto(s)
Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Proteína Quinasa C/fisiología , Receptores Acoplados a Proteínas G/fisiología , Actinas/metabolismo , Animales , Células Cultivadas , Diglicéridos/farmacología , Glucosa/farmacología , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Noqueados , Modelos Animales , Ácido Oléico/farmacología , Proteína Quinasa C-delta/deficiencia , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/fisiología , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/fisiología
2.
Hum Mutat ; 28(11): 1150, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17939176

RESUMEN

Transglutaminase 2 (TG2 or TGM2) is a multi-functional enzyme which catalyzes transamidation reactions or acts as a G-protein in intracellular signalling. Tgm2-/- Mice lacking TG2 activity are glucose intolerant and show impairment of insulin secretion, suggesting an important physiological role for TG2 in the pancreatic beta cell. We have previously described a TGM2 heterozygous missense mutation ((c.998A>G, p.N333S) in a 14 year-old patient with insulin-treated diabetes and in his diabetic father. The aim of this study was to further investigate the role of TG2 in early-onset type 2 diabetes. We analysed the TGM2 gene in 205 patients with clinically defined Maturity Onset Diabetes of the Young (MODY) or early-onset type 2 diabetes. We found two novel heterozygous mutations (c.989T>G, p.M330R; c.992T>A, p.I331N), which were not detected in 300 normoglycemic controls. All mutations were in residues which are located close to the catalytic site and impaired transamidating activity in vitro. Gene expression of TGM family genes and localization of TG2 in normal human pancreas indicated that TG2 is the only transglutaminase significantly expressed in human pancreatic islet cells. We conclude that reduced TG2 activity can contribute to disorders of glucose metabolism possibly via an impairment of insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas de Unión al GTP/genética , Mutación Missense , Transglutaminasas/genética , Adolescente , Adulto , Edad de Inicio , Animales , Células COS , Chlorocebus aethiops , Heterocigoto , Humanos , Inmunohistoquímica , Proteína Glutamina Gamma Glutamiltransferasa 2
3.
Diabetologia ; 50(6): 1304-14, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17437081

RESUMEN

AIMS/HYPOTHESIS: We explored the potential adverse effects of pro-atherogenic oxidised LDL-cholesterol particles on beta cell function. MATERIALS AND METHODS: Isolated human and rat islets and different insulin-secreting cell lines were incubated with human oxidised LDL with or without HDL particles. The insulin level was monitored by ELISA, real-time PCR and a rat insulin promoter construct linked to luciferase gene reporter. Cell apoptosis was determined by scoring cells displaying pycnotic nuclei. RESULTS: Prolonged incubation with human oxidised LDL particles led to a reduction in preproinsulin expression levels, whereas the insulin level was preserved in the presence of native LDL-cholesterol. The loss of insulin production occurred at the transcriptional levels and was associated with an increase in activator protein-1 transcriptional activity. The rise in activator protein-1 activity resulted from activation of c-Jun N-terminal kinases (JNK, now known as mitogen-activated protein kinase 8 [MAPK8]) due to a subsequent decrease in islet-brain 1 (IB1; now known as MAPK8 interacting protein 1) levels. Consistent with the pro-apoptotic role of the JNK pathway, oxidised LDL also induced a twofold increase in the rate of beta cell apoptosis. Treatment of the cells with JNK inhibitor peptides or HDL countered the effects mediated by oxidised LDL. CONCLUSIONS/INTERPRETATION: These data provide strong evidence that oxidised LDL particles exert deleterious effects in the progression of beta cell failure in diabetes and that these effects can be countered by HDL particles.


Asunto(s)
Células Secretoras de Insulina/enzimología , Insulina/genética , Lipoproteínas HDL/farmacología , Lipoproteínas LDL/farmacología , MAP Quinasa Quinasa 4/metabolismo , Animales , Apoptosis , Línea Celular , Diabetes Mellitus/enzimología , Progresión de la Enfermedad , Activación Enzimática , Genes Reporteros , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , Masculino , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , ARN/genética , ARN/aislamiento & purificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA