Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 10(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206966

RESUMEN

The objective of this research was to evaluate the use of a controlled-release carvacrol powder to delay storage decay and maintain the safety of blueberries. The controlled-release carvacrol powder was a microcapsule of carvacrol (11% (w/w) active carvacrol) surrounded by a pectin/sodium alginate matrix. The microcapsules were packed in an air-permeable pouch, and then attached to the top of a clamshell filled with blueberries. The blueberries, inoculated with Escherichia coli or Colletotrichum acutatum, or non-inoculated control, were monitored for microbial growth and quality for 10 days at 10 °C and 5 days at 20 °C. Three treatments were compared: controlled-release microencapsulated carvacrol, non-encapsulated carvacrol, and control. The results showed that both the microencapsulated carvacrol and the non-encapsulated carvacrol treatments significantly reduced the populations of yeast and mold, and of E. coli and mesophilic aerobic bacteria. The microencapsulated carvacrol treated berries retained better quality due to significantly lower weight loss than control after 10 days at 10 °C. Sensory panelists found that the microencapsulated carvacrol berries had significantly higher overall blueberry flavor and lower discernible off-flavor in comparison with the non-encapsulated treatment after 3 days at 20 °C. The fruit internal quality, including total soluble solids content (SSC), and titratable acidity (TA), was not significantly affected by any treatment. These results indicate that pectin/sodium alginate controlled-release microencapsulated carvacrol can be used for the preservation of blueberries or other small fruit.

2.
Genomics ; 113(2): 552-563, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33460734

RESUMEN

Rapid loss of firmness is a major handicap for persimmon (Diospyros kaki Thunb.) transportation and retail. The present study employed a comparative transcriptomic approach to elucidate the mechanism involving ethylene and cell wall modification related genes in fruit firmness control of two cultivars during post harvest ripening. In contrast to the short shelf life cultivar (Mopan), the long shelf life cultivar (Yoho) kept high firmness during ripening. Extensive loss of firmness in Mopan drove an intense transcriptional activity. Globally, Mopan and Yoho shared very few common differentially expressed structural genes and regulators. Yoho strongly repressed the expression of ACC synthase and several classes of cell wall degradation genes at the onset of ripening and only induced them during late ripening period. Various ERF, WRKY, MYB, bHLH transcription factors were found highly active during fruit ripening. Overall, this study generates novel gene resources as important tools for extending persimmon shelf life.


Asunto(s)
Pared Celular/metabolismo , Diospyros/genética , Etilenos/metabolismo , Transcriptoma , Pared Celular/genética , Diospyros/crecimiento & desarrollo , Diospyros/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Liasas/genética , Liasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Phytopathology ; 110(2): 287-296, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31713458

RESUMEN

Citrus canker (CC), caused by the bacterial pathogen Xanthomonas citri subsp. citri, impacts citrus production in many areas of the world by reducing yields, degrading tree health, and severely blemishing the outer peels of fresh fruit. The relative susceptibility to CC among different species of Citrus varies from the highly susceptible lime (Citrus × aurantifolia), sweet orange (C. × sinensis), and grapefruit (C. × paradisi) to the much less susceptible calamondin (C. × microcarpa) and kumquat (C. japonica). This investigation compares the responses to infection with X. citri subsp. citri of these five genotypes with respect to phenylpropanoid compound profiles and relative increases or decreases of specific compounds postinoculation. In response to X. citri subsp. citri infection, all hosts possessed increased concentrations of phenylpropanoids in leaf tissue, whereas the similarly treated nonhost orange jessamine (Murraya paniculata) did not. Several of the tested genotypes exhibited notably increased production of fluorescent phenylpropanoids, including umbelliferone, herniarin, auraptene, scoparone, and others. The profiles of these compounds and their levels of production varied among the tested species yet all investigated Citrus genotypes exhibited increased concentrations of phenylpropanoids regardless of their degree of susceptibility to X. citri subsp. citri. Kumquat and calamondin, the tested genotypes least susceptible to X. citri subsp. citri, also exhibited the highest levels of the dihydrochalcone 3',5'-di-C-glucosyl phloretin, the aglycone portion of which, phloretin, is a known antibiotic, although levels of this compound were not affected by inoculation with X. citri subsp. citri.


Asunto(s)
Citrus , Interacciones Huésped-Patógeno , Hojas de la Planta , Xanthomonas , Citrus/microbiología , Hojas de la Planta/microbiología , Xanthomonas/fisiología
4.
Mol Plant Pathol ; 19(6): 1302-1318, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29105297

RESUMEN

Taxonomic status: Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species Xanthomonas citri ssp. citri (Xcc). Host range: Compatible hosts vary in their susceptibility to citrus canker (CC), with grapefruit, lime and lemon being the most susceptible, sweet orange being moderately susceptible, and kumquat and calamondin being amongst the least susceptible. Microbiological properties: Xcc is a rod-shaped (1.5-2.0 × 0.5-0.75 µm), Gram-negative, aerobic bacterium with a single polar flagellum. The bacterium forms yellow colonies on culture media as a result of the production of xanthomonadin. Distribution: Present in South America, the British Virgin Islands, Africa, the Middle East, India, Asia and the South Pacific islands. Localized incidence in the USA, Argentina, Brazil, Bolivia, Uruguay, Senegal, Mali, Burkina Faso, Tanzania, Iran, Saudi Arabia, Yemen and Bangladesh. Widespread throughout Paraguay, Comoros, China, Japan, Malaysia and Vietnam. Eradicated from South Africa, Australia and New Zealand. Absent from Europe.


Asunto(s)
Citrus/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/patogenicidad
5.
FEMS Microbiol Lett ; 364(14)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854673

RESUMEN

The genome sequence of the obligate chemolithoautotroph Hydrogenovibrio crunogenus paradoxically predicts a complete oxidative citric acid cycle (CAC). This prediction was tested by multiple approaches including whole cell carbon assimilation to verify obligate autotrophy, phylogenetic analysis of CAC enzyme sequences and enzyme assays. Hydrogenovibrio crunogenus did not assimilate any of the organic compounds provided (acetate, succinate, glucose, yeast extract, tryptone). Enzyme activities confirmed that its CAC is mostly uncoupled from the NADH pool. 2-Oxoglutarate:ferredoxin oxidoreductase activity is absent, though pyruvate:ferredoxin oxidoreductase is present, indicating that sequence-based predictions of substrate for this oxidoreductase were incorrect, and that H. crunogenus may have an incomplete CAC. Though the H. crunogenus CAC genes encode uncommon enzymes, the taxonomic distribution of their top matches suggests that they were not horizontally acquired. Comparison of H. crunogenus CAC genes to those present in other 'Proteobacteria' reveals that H. crunogenus and other obligate autotrophs lack the functional redundancy for the steps of the CAC typical for facultative autotrophs and heterotrophs, providing another possible mechanism for obligate autotrophy.


Asunto(s)
Carbono/metabolismo , Ciclo del Ácido Cítrico , Respiraderos Hidrotermales/microbiología , Piscirickettsiaceae/metabolismo , Crecimiento Quimioautotrófico , Glucosa/metabolismo , Oxidación-Reducción , Filogenia , Piscirickettsiaceae/clasificación , Piscirickettsiaceae/genética , Ácido Pirúvico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...