Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494548

RESUMEN

Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown. Using Drop-Seq data from the arcuate nucleus of adult mice and in situ hybridization, we identified Nescient Helix-Loop-Helix 2 (Nhlh2), a transcription factor of the basic helix-loop-helix family, to be enriched in Kiss1 neurons. JASPAR analysis revealed several binding sites for NHLH2 in the Kiss1 and Tac2 (neurokinin B) 5' regulatory regions. In vitro luciferase assays evidenced a robust stimulatory action of NHLH2 on human KISS1 and TAC3 promoters. The recruitment of NHLH2 to the KISS1 and TAC3 promoters was further confirmed through chromatin immunoprecipitation. In vivo conditional ablation of Nhlh2 from Kiss1 neurons using Kiss1Cre:Nhlh2fl/fl mice induced a male-specific delay in puberty onset, in line with a decrease in arcuate Kiss1 expression. Females retained normal reproductive function albeit with irregular estrous cycles. Further analysis of male Kiss1Cre:Nhlh2fl/fl mice revealed higher susceptibility to metabolic challenges in the release of luteinizing hormone and impaired response to leptin. Overall, in Kiss1 neurons, Nhlh2 contributes to the metabolic regulation of kisspeptin and NKB synthesis and release, with implications for the timing of puberty onset and regulation of fertility in male mice.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Kisspeptinas/metabolismo , Neuronas/fisiología , Maduración Sexual/fisiología , Animales , Línea Celular , Cromatina , ADN/genética , Estradiol/farmacología , Femenino , Fertilidad , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Kisspeptinas/genética , Kisspeptinas/farmacología , Leptina/farmacología , Hormona Luteinizante/metabolismo , Masculino , Ratones , Ratones Noqueados , Fragmentos de Péptidos/farmacología , Reacción en Cadena de la Polimerasa/métodos , Factores Sexuales , Sustancia P/análogos & derivados , Sustancia P/farmacología
2.
Biol Reprod ; 105(4): 1056-1067, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34037695

RESUMEN

Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirms they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.


Asunto(s)
Hipotálamo/metabolismo , Kisspeptinas/genética , Neuroquinina B/genética , Progestinas/farmacología , Receptores de Neuroquinina-3/genética , Sus scrofa/genética , Acetato de Trembolona/análogos & derivados , Animales , Femenino , Perfilación de la Expresión Génica/veterinaria , Hipotálamo/efectos de los fármacos , Kisspeptinas/metabolismo , Neuroquinina B/metabolismo , Receptores de Neuroquinina-3/metabolismo , Sus scrofa/metabolismo , Acetato de Trembolona/farmacología
3.
Neuroendocrinology ; 111(6): 542-554, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32512561

RESUMEN

Tachykinins (neurokinin A [NKA], neurokinin B [NKB], and substance P [SP]) are important components of the neuroendocrine control of reproduction by direct stimulation of Kiss1 neurons to control GnRH pulsatility, which is essential for reproduction. Despite this role of tachykinins in successful reproduction, knockout (KO) mice for Tac1 (NKA/SP) and Tac2 (NKB) genes are fertile, resembling the phenotype of human patients bearing NKB signaling mutations, who often reverse their hypogonadal phenotype. This suggests the existence of compensatory mechanisms among the different tachykinin ligand-receptor systems to maintain reproduction in the absence of one of them. In order to test this hypothesis, we generated complete tachykinin-deficient mice (Tac1/Tac2KO). Male mice displayed delayed puberty onset and decreased luteinizing hormone (LH) pulsatility (frequency and amplitude of LH pulses) but preserved fertility. However, females did not show signs of puberty onset (first estrus) within 45 days after vaginal opening, they displayed a low frequency (but normal amplitude) of LH pulses, and 80% of them remained infertile. Further evaluation identified a complete absence of the preovulatory LH surge in Tac1/Tac2KO females as well as in wild-type females treated with NKB or SP receptor antagonists. These data confirmed a fundamental role of tachykinins in the timing of puberty onset and LH pulsatility and uncovered a role of tachykinin signaling in facilitation of the preovulatory LH surge. Overall, these findings indicate that tachykinin signaling plays a dominant role in the control of ovulation, with potential implications as a pathogenic mechanism and a therapeutic target to improve reproductive outcomes in women with ovulation impairments.


Asunto(s)
Fertilidad/fisiología , Hormona Luteinizante/metabolismo , Maduración Sexual/fisiología , Taquicininas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Transducción de Señal/fisiología
4.
Endocrinology ; 160(10): 2453-2463, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504389

RESUMEN

The tachykinin neurokinin B (NKB, Tac2) is critical for proper GnRH release in mammals, however, the role of the other tachykinins, such as substance P (SP) and neurokinin A (NKA) in reproduction, is still not well understood. In this study, we demonstrate that NKA controls the timing of puberty onset (similar to NKB and SP) and stimulates LH release in adulthood through NKB-independent (but kisspeptin-dependent) mechanisms in the presence of sex steroids. Furthermore, this is achieved, at least in part, through the autosynaptic activation of Tac1 neurons, which express NK2R (Tacr2), the receptor for NKA. Conversely, in the absence of sex steroids, as observed in ovariectomy, NKA inhibits LH through a mechanism that requires the presence of functional receptors for NKB and dynorphin (NK3R and KOR, respectively). Moreover, the ability of NKA to modulate LH secretion is absent in Kiss1KO mice, suggesting that its action occurs upstream of Kiss1 neurons. Overall, we demonstrate that NKA signaling is a critical component in the central control of reproduction, by contributing to the indirect regulation of kisspeptin release.


Asunto(s)
Gonadotropinas/metabolismo , Neuroquinina A/metabolismo , Animales , Femenino , Kisspeptinas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroquinina A/genética , Neuroquinina B/genética , Neuroquinina B/metabolismo , Precursores de Proteínas , Receptores de Neuroquinina-2/genética , Receptores de Neuroquinina-2/metabolismo , Maduración Sexual , Sustancia P/genética , Sustancia P/metabolismo , Taquicininas
5.
J Clin Endocrinol Metab ; 104(10): 4304-4318, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31132118

RESUMEN

CONTEXT: Kisspeptin-neurokinin B (NKB)-dynorphin neurons are critical regulators of the hypothalamic-pituitary-gonadal axis. NKB and dynorphin are hypothesized to influence the frequency of GnRH pulses, whereas kisspeptin is hypothesized to be a generator of the GnRH pulse. How these neuropeptides interact remains unclear. OBJECTIVE: To probe the role of NKB in GnRH pulse generation and to determine the interactions between NKB, kisspeptin, and dynorphin in humans and mice with a complete absence of NKB. DESIGN: Case/control. SETTING: Academic medical center. PARTICIPANTS: Members of a consanguineous family bearing biallelic loss-of-function mutations in the gene encoding NKB and NKB-deficient mice. INTERVENTIONS: Frequent blood sampling to characterize neuroendocrine profile and administration of kisspeptin, GnRH, and naloxone, a nonspecific opioid receptor antagonist used to block dynorphin. MAIN OUTCOME MEASURES: LH pulse characteristics. RESULTS: Humans lacking NKB demonstrate slow LH pulse frequency, which can be increased by opioid antagonism. Mice lacking NKB also demonstrate impaired LH secretion, which can be augmented with an identical pharmacologic manipulation. Both mice and humans with NKB deficiency respond to exogenous kisspeptin. CONCLUSION: The preservation of LH pulses in the absence of NKB and dynorphin signaling suggests that both peptides are dispensable for GnRH pulse generation and kisspeptin responsiveness. However, NKB and dynorphin appear to have opposing roles in the modulation of GnRH pulse frequency.


Asunto(s)
Dinorfinas/genética , Hipogonadismo/genética , Kisspeptinas/genética , Hormona Luteinizante/administración & dosificación , Neuroquinina B/genética , Transducción de Señal/efectos de los fármacos , Centros Médicos Académicos , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Niño , Modelos Animales de Enfermedad , Femenino , Hormona Liberadora de Gonadotropina/administración & dosificación , Humanos , Hipogonadismo/sangre , Hipogonadismo/tratamiento farmacológico , Ratones , Ratones Noqueados , Antagonistas de Narcóticos/administración & dosificación , Neuronas/efectos de los fármacos , Sustancia P/metabolismo , Resultado del Tratamiento , Adulto Joven
6.
Elife ; 72018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30565563

RESUMEN

Neurokinin B (NKB) signaling is critical for reproduction in all studied species. The existing consensus is that NKB induces GnRH release via kisspeptin (Kiss1) stimulation in the arcuate nucleus. However, the stimulatory action of NKB is dependent on circulating estrogen (E2) levels, without which, NKB inhibits luteinizing hormone (LH) release. Importantly, the evidence supporting the kisspeptin-dependent role of NKB, derives from models of persistent hypogonadal state [e.g. Kiss1r knock-out (KO) mice], with reduced E2 levels. Here, we demonstrate that in the presence of E2, NKB signaling induces LH release in a kisspeptin-independent manner through the activation of NK3R (NKB receptor) neurons in the posterodorsal medial amygdala (MePD). Importantly, we show that chemogenetic activation of MePD Kiss1 neurons induces LH release, however, the stimulatory action of NKB in this area is Kiss1 neuron-independent. These results document the existence of two independent neuronal circuitries within the MePD that regulate reproductive function in females. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Estrógenos/metabolismo , Kisspeptinas/genética , Neuroquinina B/genética , Receptores de Taquicininas/genética , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Complejo Nuclear Corticomedial , Estrógenos/genética , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Luteinizante/antagonistas & inhibidores , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Ratones , Ratones Noqueados , Neuroquinina B/metabolismo , Neuronas/metabolismo , Transducción de Señal
7.
Elife ; 72018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29905528

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1) is a neuromodulator implicated in anxiety, metabolism and reproductive behavior. PACAP global knockout mice have decreased fertility and PACAP modulates LH release. However, its source and role at the hypothalamic level remain unknown. We demonstrate that PACAP-expressing neurons of the ventral premamillary nucleus of the hypothalamus (PMVPACAP) project to, and make direct contact with, kisspeptin neurons in the arcuate and AVPV/PeN nuclei and a subset of these neurons respond to PACAP exposure. Targeted deletion of PACAP from the PMV through stereotaxic virally mediated cre- injection or genetic cross to LepR-i-cre mice with Adcyap1fl/fl mice led to delayed puberty onset and impaired reproductive function in female, but not male, mice. We propose a new role for PACAP-expressing neurons in the PMV in the relay of nutritional state information to regulate GnRH release by modulating the activity of kisspeptin neurons, thereby regulating reproduction in female mice.


Asunto(s)
Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Reproducción/fisiología , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Reproducción/genética , Factores Sexuales , Maduración Sexual/genética , Núcleo Hipotalámico Ventromedial/citología
8.
Reproduction ; 153(1): R1-R14, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27754872

RESUMEN

Reproductive function is driven by the hormonal interplay between the gonads and brain-pituitary axis. Gonadotropin-releasing hormone (GnRH) is released in a pulsatile manner, which is critical for the attainment and maintenance of fertility, however, GnRH neurons lack the ability to directly respond to most regulatory factors, and a hierarchical upstream neuronal network governs its secretion. We and others proposed a model in which Kiss1 neurons in the arcuate nucleus (ARC), so called KNDy neurons, release kisspeptin (a potent GnRH secretagogue) in a pulsatile manner to drive GnRH pulses under the coordinated autosynaptic action of its cotransmitters, the tachykinin neurokinin B (NKB, stimulatory) and dynorphin (inhibitory). Numerous genetic and pharmacological studies support this model; however, additional regulatory mechanisms (upstream of KNDy neurons) and alternative pathways of GnRH secretion (kisspeptin-independent) exist, but remain ill defined. In this aspect, attention to other members of the tachykinin family, namely substance P (SP) and neurokinin A (NKA), has recently been rekindled. Even though there are still major gaps in our knowledge about the functional significance of these systems, substantial evidence, as discussed below, is placing tachykinin signaling as an important pathway for the awakening of the reproductive axis and the onset of puberty to physiological GnRH secretion and maintenance of fertility in adulthood.

9.
Endocrinology ; 157(12): 4829-4841, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27704950

RESUMEN

There is now general agreement that neurokinin B (NKB) acts via neurokinin-3-receptor (NK3R) to stimulate secretion of GnRH and LH in several species, including rats, mice, sheep, and humans. However, the roles of two other tachykinins, substance P (SP) and neurokinin A, which act primarily via NK1R and NK2R, respectively, are less clear. In rodents, these signaling pathways can stimulate LH release and substitute for NKB signaling; in humans, SP is colocalized with kisspeptin and NKB in the mediobasal hypothalamus. In this study, we examined the possible role of these tachykinins in control of the reproductive axis in sheep. Immunohistochemistry was used to describe the expression of SP and NK1R in the ovine diencephalon and determine whether these proteins are colocalized in kisspeptin or GnRH neurons. SP-containing cell bodies were largely confined to the arcuate nucleus, but NK1R-immunoreactivity was more widespread. However, there was very low coexpression of SP or NK1R in kisspeptin cells and none in GnRH neurons. We next determined the minimal effective dose of these three tachykinins that would stimulate LH secretion when administered into the third ventricle of ovary-intact anestrous sheep. A much lower dose of NKB (0.2 nmol) than of neurokinin A (2 nmol) or SP (10 nmol) consistently stimulated LH secretion. Moreover, the relative potency of these three neuropeptides parallels the relative selectivity of NK3R. Based on these anatomical and pharmacological data, we conclude that NKB-NK3R signaling is the primary pathway for the control of GnRH secretion by tachykinins in ewes.


Asunto(s)
Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/efectos de los fármacos , Inmunohistoquímica , Kisspeptinas/metabolismo , Neuroquinina A/administración & dosificación , Neuroquinina B/administración & dosificación , Neuronas/efectos de los fármacos , Ovinos , Transducción de Señal/efectos de los fármacos , Sustancia P/administración & dosificación
10.
Biol Reprod ; 91(6): 141, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25320149

RESUMEN

Cells in the medial preoptic area (mPOA), arcuate nucleus (ARC), and ventromedial nucleus (VMN) that possess estrogen receptor alpha (ER alpha) mediate estradiol feedback to regulate endocrine and behavioral events during the estrous cycle. A percentage of ER alpha cells located in the ARC and VMN express somatostatin (SST) and are activated in response to estradiol. The aims of the present study were to investigate the location of c-Fos, a marker for activation, in cells containing ER alpha or SST at various times during the follicular phase and to determine whether lipopolysaccharide (LPS) administration, which leads to disruption of the luteinizing hormone (LH) surge, is accompanied by altered ER alpha and/or SST activation patterns. Follicular phases were synchronized with progesterone vaginal pessaries, and control animals were killed at 0, 16, 31, and 40 h (n = 4-6/group) after progesterone withdrawal (PW [time 0]). At 28 h, other animals received LPS (100 ng/kg) and were subsequently killed at 31 h or 40 h (n = 5/group). Hypothalamic sections were immunostained for c-Fos and ER alpha or SST. LH surges occurred only in control ewes with onset at 36.7 ± 1.3 h after PW; these animals had a marked increase in the percentage of ER alpha cells that colocalized c-Fos (%ER alpha/c-Fos) in the ARC and mPOA from 31 h after PW and throughout the LH surge. In the VMN, %ER alpha/c-Fos was higher in animals that expressed sexual behavior than in those that did not. SST cell activation in the ARC and VMN was greater during the LH surge than in other stages in the follicular phase. At 31 or 40 h after PW (i.e., 3 or 12 h after treatment, respectively), LPS decreased %ER alpha/c-Fos in the ARC and the mPOA, but there was no change in the VMN compared to that in controls. The %SST/c-Fos increased in the VMN at 31 h after PW (i.e., 3 h after LPS) with no change in the ARC compared to controls. These results indicate that there is a distinct temporal pattern of ER alpha cell activation in the hypothalamus during the follicular phase, which begins in the ARC and mPOA at least 6-7 h before the LH surge onset and extends to the VMN after the onset of sexual behavior and LH surge. Furthermore, during the surge, some of these ER alpha-activated cells may be SST-secreting cells. This pattern is markedly altered by LPS administered during the late follicular phase, indicating that the disruptive effects of this stressor are mediated by suppressing ER alpha cell activation at the level of the mPOA and ARC and enhancing SST cell activation in the VMN, leading to the attenuation of the LH surge.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Receptor alfa de Estrógeno/metabolismo , Lipopolisacáridos/farmacología , Neuronas/fisiología , Área Preóptica/metabolismo , Somatostatina/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Femenino , Fase Folicular/efectos de los fármacos , Neuronas/efectos de los fármacos , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Ovinos/fisiología
11.
Physiol Behav ; 133: 197-206, 2014 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-24874777

RESUMEN

Insulin has long been recognized as a key regulator of energy homeostasis via its actions at the level of the brain, but in addition, plays a role in regulating neural control of reproduction. In this review, we consider and compare evidence from animal models demonstrating a role for insulin for physiological control of reproduction by effects on GnRH/LH secretion. We also review the role that insulin plays in prenatal programming of adult reproduction, and consider specific candidate neurons in the adult hypothalamus by which insulin may act to regulate reproductive function. Finally, we review clinical evidence of the role that insulin may play in adult human fertility and reproductive disorders. Overall, while insulin appears to have a significant impact on reproductive neuroendocrine function, there are many unanswered questions regarding its precise sites and mechanisms of action, and their impact on developing and adult reproductive neuroendocrine function.


Asunto(s)
Metabolismo Energético/fisiología , Insulina/metabolismo , Reproducción/fisiología , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Insulina/farmacología , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Reproducción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...