Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Aging Neurosci ; 13: 786199, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153719

RESUMEN

MRE11, RAD50, and NBS1 form the MRN complex in response to DNA damage to activate ATM, a gene responsible for Ataxia-Telangiectasia (A-T). Loss of any components of the MRN complex compromises cell life. Mutations in MRE11, RAD50, and NBS1 cause human genomic instability syndromes Ataxia-Telangiectasia-like disorder (A-TLD), NBS-like disorder (NBSLD), and Nijmegen Breakage Syndrome (NBS), respectively. Among other pathologies, neuronal deficits, including microcephaly, intellectual disabilities, and progressive cerebellar degeneration, are common in these disorders. Nbs1 deletion in neural stem cells of mouse models resulted in cerebellar atrophy and ataxia, mimicking the A-T syndrome suggesting an etiological function of MRN-mediated DDR in neuronal homeostasis and neuropathology. Here we show that deletion of Nbs1 or Mre11 specifically in Purkinje neurons of mouse models (Nbs1-PCΔ and Mre11-PCΔ, respectively) is compatible with cerebellar development. Deleting Nbs1 in Purkinje cells disrupts the cellular localization pattern of MRE11 or RAD50 without inducing apparent DNA damage, albeit impaired DNA damage response (judged by 53BP1 focus formation) to ionizing radiation (IR). However, neither survival nor morphology of Purkinje cells and thus locomotor capabilities is affected by Nbs1 deletion under physiological conditions. Similarly, deletion of Mre11 in Purkinje cells does not affect the numbers or morphology of Purkinje cells and causes no accumulation of DNA damage. Mre11-deleted Purkinje cells have regular intrinsic neuronal activity. Taken together, these data indicate that the MRN complex is not essential for the survival and functionality of postmitotic neurons such as Purkinje cells. Thus, cerebellar deficits in MRN defect-related disorders and mouse models are unlikely to be a direct consequence of loss of these factors compromising DDR in postmitotic neurons such as Purkinje cells.

2.
Nat Commun ; 11(1): 3669, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32699356

RESUMEN

Recent characterization of spatiotemporal genomic architecture of IDH-wild-type multifocal glioblastomas (M-GBMs) suggests a clinically unobserved common-ancestor (CA) with a less aggressive phenotype, generating highly genetically divergent malignant gliomas/GBMs in distant brain regions. Using serial MRI/3D-reconstruction, whole-genome sequencing and spectral karyotyping-based single-cell phylogenetic tree building, we show two distinct types of tumor evolution in p53-mutant driven mouse models. Malignant gliomas/GBMs grow as a single mass (Type 1) and multifocal masses (Type 2), respectively, despite both exhibiting loss of Pten/chromosome 19 (chr19) and PI3K/Akt activation with sub-tetraploid/4N genomes. Analysis of early biopsied and multi-segment tumor tissues reveals no evidence of less proliferative diploid/2N lesions in Type 1 tumors. Strikingly, CA-derived relatively quiescent tumor precursors with ancestral diploid/2N genomes and normal Pten/chr19 are observed in the subventricular zone (SVZ), but are distantly segregated from multi focal Type 2 tumors. Importantly, PI3K/Akt inhibition by Rictor/mTORC2 deletion blocks distant dispersal, restricting glioma growth in the SVZ.


Asunto(s)
Neoplasias Encefálicas/genética , Carcinogénesis/genética , Evolución Clonal , Evolución Molecular , Glioblastoma/genética , Animales , Biopsia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Cariotipificación , Imagen por Resonancia Magnética , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Ratones , Ratones Transgénicos , Mutación , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Transducción de Señal/genética , Análisis de la Célula Individual , Secuenciación Completa del Genoma
3.
Sci Rep ; 8(1): 10121, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973640

RESUMEN

Ataxia-telangiectasia (AT) and related disorders feature cancer predisposition, neurodegeneration, and immunodeficiency resulting from failure to respond to DNA damage. Hypomorphic mutations in MRE11 cause an AT-like disorder (ATLD) with variable clinical presentation. We have sought to understand how diverse MRE11 mutations may provide unique therapeutic opportunities, and potentially correlate with clinical variability. Here we have undertaken studies of an MRE11 splice site mutation that was found in two ATLD siblings that died of pulmonary adenocarcinoma at the young ages of 9 and 16. The mutation, termed MRE11 alternative splice mutation (MRE11ASM), causes skipping of a highly conserved exon while preserving the protein's open reading frame. A new mouse model expressing Mre11ASM from the endogenous locus demonstrates that the protein is present at very low levels, a feature in common with the MRE11ATLD1 mutant found in other patients. However, the mechanisms causing low protein levels are distinct. MRE11ASM is mislocalized to the cytoplasm, in contrast to MRE11ATLD1, which remains nuclear. Strikingly, MRE11ASM mislocalization is corrected by inhibition of the proteasome, implying that the protein undergoes strict protein quality control in the nucleus. These findings raise the prospect that inhibition of poorly understood nuclear protein quality control mechanisms might have therapeutic benefit in genetic disorders causing cytoplasmic mislocalization.


Asunto(s)
Empalme Alternativo , Ataxia Telangiectasia/genética , Núcleo Celular/metabolismo , Proteína Homóloga de MRE11/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Ataxia Telangiectasia/patología , Células Cultivadas , Proteína Homóloga de MRE11/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Inhibidores de Proteasoma/farmacología
4.
Cancer Res ; 77(19): 5327-5338, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28819025

RESUMEN

Hypomorphic mutations in the genes encoding the MRE11/RAD50/NBS1 (MRN) DNA repair complex lead to cancer-prone syndromes. MRN binds DNA double-strand breaks, where it functions in repair and triggers cell-cycle checkpoints via activation of the ataxia-telangiectasia mutated kinase. To gain understanding of MRN in cancer, we engineered mice with B lymphocytes lacking MRN, or harboring MRN in which MRE11 lacks nuclease activities. Both forms of MRN deficiency led to hallmarks of cancer, including oncogenic translocations involving c-Myc and the immunoglobulin locus. These preneoplastic B lymphocytes did not progress to detectable B lineage lymphoma, even in the absence of p53. Moreover, Mre11 deficiencies prevented tumorigenesis in a mouse model strongly predisposed to spontaneous B-cell lymphomas. Our findings indicate that MRN cannot be considered a standard tumor suppressor and instead imply that nuclease activities of MRE11 are required for oncogenesis. Inhibition of MRE11 nuclease activity increased DNA damage and selectively induced apoptosis in cells overexpressing oncogenes, suggesting MRE11 serves an important role in countering oncogene-induced replication stress. Thus, MRE11 may offer a target for cancer therapeutic development. More broadly, our work supports the idea that subtle enhancements of endogenous genome instability can exceed the tolerance of cancer cells and be exploited for therapeutic ends. Cancer Res; 77(19); 5327-38. ©2017 AACR.


Asunto(s)
Linfocitos B/patología , Transformación Celular Neoplásica/patología , Enzimas Reparadoras del ADN/fisiología , Replicación del ADN , Proteínas de Unión al ADN/fisiología , Linfoma de Células B/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transportadoras de Casetes de Unión a ATP/fisiología , Ácido Anhídrido Hidrolasas , Animales , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Linfocitos B/metabolismo , Proteínas de Ciclo Celular/fisiología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Roturas del ADN de Doble Cadena , Reparación del ADN , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Inestabilidad Genómica , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Proteína Homóloga de MRE11 , Ratones , Mutación , Proteínas Nucleares/fisiología , Oncogenes , Proteínas Proto-Oncogénicas c-myc/genética
5.
Nat Struct Mol Biol ; 22(9): 736-43, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26280532

RESUMEN

Two kinases, ATM and DNA-PKcs, control rapid responses to DNA double-strand breaks (DSBs). The paradigm for ATM control is recruitment and activation by the Mre11-Rad50-NBS1 (MRN) sensor complex, whereas DNA-PKcs requires the sensor Ku (Ku70-Ku80). Using mouse cells containing targeted mutant alleles of Mre11 (Mre11a) and/or Ku70 (Xrcc6), together with pharmacologic kinase inhibition, we demonstrate that ATM can be activated by DSBs in the absence of MRN. When MRN is deficient, DNA-PKcs efficiently substitutes for ATM in facilitating local chromatin responses. In the absence of both MRN and Ku, ATM is recruited to chromatin, where it phosphorylates H2AX and triggers the G2-M cell-cycle checkpoint, but the DNA-repair functions of MRN are not restored. These results suggest that, in contrast to straightforward recruitment and activation by MRN, a complex interplay between sensors has a substantial role in ATM control.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Ratones , Unión Proteica
6.
J Clin Invest ; 124(1): 353-66, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316971

RESUMEN

The shelterin complex plays dual functions in telomere homeostasis by recruiting telomerase and preventing the activation of a DNA damage response at telomeric ends. Somatic stem cells require telomerase activity, as evidenced by progressive stem cell loss leading to bone marrow failure in hereditary dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also arise from mutations in specific shelterin genes, although little is known about shelterin functions in somatic stem cells. We found that mouse hematopoietic stem cells (HSCs) are acutely sensitive to inactivation of the shelterin gene Acd, encoding TPP1. Homozygosity for a hypomorphic acd allele preserved the emergence and expansion of fetal HSCs but led to profoundly defective function in transplantation assays. Upon complete Acd inactivation, HSCs expressed p53 target genes, underwent cell cycle arrest, and were severely depleted within days, leading to hematopoietic failure. TPP1 loss induced increased telomeric fusion events in bone marrow progenitors. However, unlike in epidermal stem cells, p53 deficiency did not rescue TPP1-deficient HSCs, indicating that shelterin dysfunction has unique effects in different stem cell populations. Because the consequences of telomere shortening are progressive and unsynchronized, acute loss of shelterin function represents an attractive alternative for studying telomere crisis in hematopoietic progenitors.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Mutación , Proteínas de Unión a Telómeros/genética , Animales , Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Células Cultivadas , Inestabilidad Cromosómica , Aberraciones Cromosómicas , Activación Enzimática , Puntos de Control de la Fase G2 del Ciclo Celular , Genes Letales , Trasplante de Células Madre Hematopoyéticas , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pancitopenia/genética , Acortamiento del Telómero , Proteínas de Unión a Telómeros/deficiencia
7.
Hum Mol Genet ; 22(25): 5146-59, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-23912341

RESUMEN

DNA double-strand breaks (DSBs) can lead to instability of the genome if not repaired correctly. The MRE11/RAD50/NBS1 (MRN) complex binds DSBs and initiates damage-induced signaling cascades via activation of the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) kinases. Mutations throughout MRE11 cause ataxia-telangiectasia-like disorder (ATLD) featuring cerebellar degeneration, and cancer-predisposition in certain kindreds. Here, we have examined the impact on DNA damage signaling of several disease-associated MRE11A alleles to gain greater understanding of the mechanisms underlying the diverse disease sequelae of ATLD. To this end, we have designed a system whereby endogenous wild-type Mre11a is conditionally deleted and disease-associated MRE11 mutants are stably expressed at physiologic levels. We find that mutations in the highly conserved N-terminal domain impact ATM signaling by perturbing both MRE11 interaction with NBS1 and MRE11 homodimerization. In contrast, an inherited allele in the MRE11 C-terminus maintains MRN interactions and ATM/ATR kinase activation. These findings reveal that ATLD patients have reduced ATM activation resulting from at least two distinct mechanisms: (i) N-terminal mutations destabilize MRN interactions, and (ii) mutation of the extreme C-terminus maintains interactions but leads to low levels of the complex. The N-terminal mutations were found in ATLD patients with childhood cancer; thus, our studies suggest a clinically relevant dichotomy in MRE11A alleles. More broadly, these studies underscore the importance of understanding specific effects of hypomorphic disease-associated mutations to achieve accurate prognosis and appropriate long-term medical surveillance.


Asunto(s)
Ataxia Telangiectasia/genética , Proteínas de Unión al ADN/genética , Neoplasias/genética , Degeneraciones Espinocerebelosas/genética , Alelos , Ataxia Telangiectasia/etiología , Ataxia Telangiectasia/fisiopatología , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Predisposición Genética a la Enfermedad , Inestabilidad Genómica , Humanos , Proteína Homóloga de MRE11 , Mutación , Neoplasias/etiología , Neoplasias/patología , Transducción de Señal , Degeneraciones Espinocerebelosas/fisiopatología
8.
Proc Natl Acad Sci U S A ; 109(34): 13728-32, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22869734

RESUMEN

Many tumors are characterized by recurrent translocations between a tissue-specific gene and a proto-oncogene. The juxtaposition of the Ig heavy chain gene and Myc in Burkitt's lymphoma and in murine plasmacytoma is a classic example. Regulatory elements within the heavy chain constant region locus are required for Myc translocation and/or deregulation. However, many genes are regulated by cis-acting elements at distances up to 1,000 kb outside the locus. Such putative distal elements have not been examined for the heavy chain locus, particularly in the context of Myc translocations. We demonstrate that a transgene containing the Ig heavy chain constant region locus, inserted into five different chromosomal locations, can undergo translocations involving Myc. Furthermore, these translocations are able to generate plasmacytomas in each transgenic line. We conclude that the heavy chain constant region locus itself includes all of the elements necessary for both the translocation and the deregulation of the proto-oncogene.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas , Proteínas Proto-Oncogénicas c-myc/genética , Translocación Genética , Animales , Línea Celular Tumoral , Mapeo Cromosómico , Regulación Neoplásica de la Expresión Génica , Genoma , Humanos , Linfoma de Células B/genética , Ratones , Ratones Endogámicos BALB C , Modelos Genéticos , Datos de Secuencia Molecular , Proto-Oncogenes Mas , Transgenes
9.
Hum Mol Genet ; 21(19): 4225-36, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22736030

RESUMEN

Glutamine (Q) expansion diseases are a family of degenerative disorders caused by the lengthening of CAG triplet repeats present in the coding sequences of seemingly unrelated genes whose mutant proteins drive pathogenesis. Despite all the molecular evidence for the genetic basis of these diseases, how mutant poly-Q proteins promote cell death and drive pathogenesis remains controversial. In this report, we show a specific interaction between the mutant androgen receptor (AR), a protein associated with spinal and bulbar muscular atrophy (SBMA), and the nuclear protein PTIP (Pax Transactivation-domain Interacting Protein), a protein with an unusually long Q-rich domain that functions in DNA repair. Upon exposure to ionizing radiation, PTIP localizes to nuclear foci that are sites of DNA damage and repair. However, the expression of poly-Q AR sequesters PTIP away from radiation-induced nuclear foci. This results in sensitivity to DNA-damaging agents and chromosomal instabilities. In a mouse model of SBMA, evidence for DNA damage is detected in muscle cell nuclei and muscular atrophy is accelerated when one copy of the gene encoding PTIP is removed. These data provide a new paradigm for understanding the mechanisms of cellular degeneration observed in poly-Q expansion diseases.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Proteínas Portadoras/metabolismo , Reparación del ADN , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Péptidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores Androgénicos/genética
10.
Nat Struct Mol Biol ; 19(2): 246-52, 2012 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-22231403

RESUMEN

Homologous recombination facilitates accurate repair of DNA double-strand breaks (DSBs) during the S and G2 phases of the cell cycle by using intact sister chromatids as sequence templates. Homologous recombination capacity is maximized in S and G2 by cyclin-dependent kinase (CDK) phosphorylation of CtIP, which subsequently interacts with BRCA1 and the Mre11-Rad50-NBS1 (MRN) complex. Here we show that, in human and mouse, Mre11 controls these events through a direct interaction with CDK2 that is required for CtIP phosphorylation and BRCA1 interaction in normally dividing cells. CDK2 binds the C terminus of Mre11, which is absent in an inherited allele causing ataxia telangiectasia-like disorder. This newly uncovered role for Mre11 does not require ATM activation or nuclease activities. Therefore, functions of MRN are not restricted to DNA damage responses but include regulating homologous recombination capacity during the normal mammalian cell cycle.


Asunto(s)
Proteínas Portadoras/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Endodesoxirribonucleasas , Humanos , Proteína Homóloga de MRE11 , Ratones , Ratones Noqueados , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Recombinación Genética
11.
Cell Res ; 22(2): 305-20, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21826105

RESUMEN

The MRE11/RAD50/NBS1 complex is the primary sensor rapidly recruited to DNA double-strand breaks (DSBs). MRE11 is known to be arginine methylated by PRMT1 within its glycine-arginine-rich (GAR) motif. In this study, we report a mouse knock-in allele of Mre11 that substitutes the arginines with lysines in the GAR motif and generates the MRE11(RK) protein devoid of methylated arginines. The Mre11(RK/RK) mice were hypersensitive to γ-irradiation (IR) and the cells from these mice displayed cell cycle checkpoint defects and chromosome instability. Moreover, the Mre11(RK/RK) MEFs exhibited ATR/CHK1 signaling defects and impairment in the recruitment of RPA and RAD51 to the damaged sites. The M(RK)RN complex formed and localized to the sites of DNA damage and normally activated the ATM pathway in response to IR. The M(RK)RN complex exhibited exonuclease and DNA-binding defects in vitro responsible for the impaired DNA end resection and ATR activation observed in vivo in response to IR. Our findings provide genetic evidence for the critical role of the MRE11 GAR motif in DSB repair, and demonstrate a mechanistic link between post-translational modifications at the MRE11 GAR motif and DSB processing, as well as the ATR/CHK1 checkpoint signaling.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Puntos de Control del Ciclo Celular , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Inestabilidad Cromosómica , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Activación Enzimática , Rayos gamma , Técnicas de Sustitución del Gen , Proteína Homóloga de MRE11 , Ratones , Proteínas Quinasas/metabolismo , Recombinasa Rad51/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo
12.
Nat Struct Mol Biol ; 18(7): 761-8, 2011 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-21706008

RESUMEN

Protein ubiquitination is a crucial component of the DNA damage response. To study the mechanism of the DNA damage-induced ubiquitination pathway, we analyzed the impact of the loss of two E3 ubiquitin ligases, RNF8 and Chfr. Notably, DNA damage-induced activation of ATM kinase is suppressed in cells deficient in both RNF8 and Chfr (double-knockout, or DKO), and DKO mice develop thymic lymphomas that are nearly diploid but harbor clonal chromosome translocations. Moreover, DKO mice and cells are hypersensitive to ionizing radiation. We present evidence that RNF8 and Chfr synergistically regulate histone ubiquitination to control histone H4 Lys16 acetylation through MRG15-dependent acetyltransferase complexes. Through these complexes, RNF8 and Chfr affect chromatin relaxation and modulate ATM activation and DNA damage response pathways. Collectively, our findings demonstrate that two chromatin-remodeling factors, RNF8 and Chfr, function together to activate ATM and maintain genomic stability in vivo.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Acetilación , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Células Cultivadas , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Aberraciones Cromosómicas , Daño del ADN , Reparación del ADN , Activación Enzimática , Inestabilidad Genómica , Histonas/metabolismo , Linfoma de Células T/genética , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa , Radiación Ionizante , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
Nature ; 460(7257): 914-8, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19633651

RESUMEN

Progressive telomere attrition or uncapping of the shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. Telomere deprotection activates both ataxia telangiectasia mutated (ATM) and telangiectasia and Rad3-related (ATR) kinase-dependent DNA damage response pathways, and promotes efficient non-homologous end-joining (NHEJ) of dysfunctional telomeres. The mammalian MRE11-RAD50-NBS1 (MRN; NBS1 is also known as NBN) complex interacts with ATM to sense chromosomal double-strand breaks and coordinate global DNA damage responses. Although the MRN complex accumulates at dysfunctional telomeres, it is not known whether mammalian MRN promotes repair at these sites. Here we address this question by using mouse alleles that either inactivate the entire MRN complex or eliminate only the nuclease activities of MRE11 (ref. 8). We show that cells lacking MRN do not activate ATM when telomeric repeat binding factor 2 (TRF2) is removed from telomeres, and ligase 4 (LIG4)-dependent chromosome end-to-end fusions are markedly reduced. Residual chromatid fusions involve only telomeres generated by leading strand synthesis. Notably, although cells deficient for MRE11 nuclease activity efficiently activate ATM and recruit 53BP1 (also known as TP53BP1) to deprotected telomeres, the 3' telomeric overhang persists to prevent NHEJ-mediated chromosomal fusions. Removal of shelterin proteins that protect the 3' overhang in the setting of MRE11 nuclease deficiency restores LIG4-dependent chromosome fusions. Our data indicate a critical role for the MRN complex in sensing dysfunctional telomeres, and show that in the absence of TRF2, MRE11 nuclease activity removes the 3' telomeric overhang to promote chromosome fusions. MRE11 can also protect newly replicated leading strand telomeres from NHEJ by promoting 5' strand resection to generate POT1a-TPP1-bound 3' overhangs.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Telómero/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Alelos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona , Aberraciones Cromosómicas , Daño del ADN , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/deficiencia , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Fibroblastos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Homóloga de MRE11 , Ratones , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo Shelterina , Telómero/genética , Proteínas de Unión a Telómeros , Proteína 2 de Unión a Repeticiones Teloméricas/deficiencia , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
14.
Nat Struct Mol Biol ; 16(8): 808-13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19633670

RESUMEN

The Mre11-Rad50-NBS1 (MRN) complex has many roles in response to DNA double-strand breaks, but its functions in repair by nonhomologous end joining (NHEJ) pathways are poorly understood. We have investigated requirements for MRN in class switch recombination (CSR), a programmed DNA rearrangement in B lymphocytes that requires NHEJ. To this end, we have engineered mice that lack the entire MRN complex in B lymphocytes or that possess an intact complex that harbors mutant Mre11 lacking DNA nuclease activities. MRN deficiency confers a strong defect in CSR, affecting both the classic and the alternative NHEJ pathways. In contrast, absence of Mre11 nuclease activities causes a milder phenotype, revealing a separation of function within the complex. We propose a model in which MRN stabilizes distant breaks and processes DNA termini to facilitate repair by both the classical and alternative NHEJ pathways.


Asunto(s)
Linfocitos B/metabolismo , Reparación del ADN , Cambio de Clase de Inmunoglobulina , Transducción de Señal/fisiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Anhídrido Hidrolasas , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Linfocitos B/citología , Secuencia de Bases , Western Blotting , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Citometría de Flujo , Histonas/genética , Histonas/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Homóloga de MRE11 , Masculino , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
15.
Cancer Cell ; 15(6): 465-76, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19477426

RESUMEN

Telomere dysfunction and shortening induce chromosomal instability and tumorigenesis. In this study, we analyze the adrenocortical dysplasia (acd) mouse, harboring a mutation in Tpp1/Acd. Additional loss of p53 dramatically rescues the acd phenotype in an organ-specific manner, including skin hyperpigmentation and adrenal morphology, but not germ cell atrophy. Survival to weaning age is significantly increased in Acd(acd/acd) p53(-/-) mice. On the contrary, p53(-/-) and p53(+/-) mice with the Acd(acd/acd) genotype show a decreased tumor-free survival, compared with Acd(+/+) mice. Tumors from Acd(acd/acd) p53(+/-) mice show a striking switch from the classic spectrum of p53(-/-) mice toward carcinomas. The acd mouse model provides further support for an in vivo role of telomere deprotection in tumorigenesis.


Asunto(s)
Corteza Suprarrenal/anomalías , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión a Telómeros/fisiología , Proteína p53 Supresora de Tumor/fisiología , Corteza Suprarrenal/metabolismo , Animales , Carcinoma/metabolismo , Carcinoma/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Inestabilidad Cromosómica/genética , Inestabilidad Cromosómica/fisiología , Femenino , Linfoma/metabolismo , Linfoma/patología , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos , Fenotipo , Sarcoma/metabolismo , Sarcoma/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pigmentación de la Piel/genética , Pigmentación de la Piel/fisiología , Espermatogénesis/genética , Espermatogénesis/fisiología , Telómero/genética , Telómero/fisiología , Proteínas de Unión a Telómeros/genética , Testículo/patología , Testículo/fisiopatología , Proteína p53 Supresora de Tumor/genética
16.
Blood ; 113(13): 2965-75, 2009 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-19126872

RESUMEN

The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation. In the current study, we examine the in vivo consequences of a mutant form of RAG1, RAG1-S723C, that is proficient for DNA cleavage, yet exhibits defects in postcleavage complex formation and end joining in vitro. We generated a knockin mouse model harboring the RAG1-S723C hypomorphic mutation and examined the immune system in this fully in vivo setting. RAG1-S723C homozygous mice exhibit impaired lymphocyte development and decreased V(D)J rearrangements. Distinct from RAG nullizygosity, the RAG1-S723C hypomorph results in aberrant DNA double-strand breaks within rearranging loci. RAG1-S723C also predisposes to thymic lymphomas associated with chromosomal translocations in a p53 mutant background, and heterozygosity for the mutant allele accelerates age-associated immune system dysfunction. Thus, our study provides in vivo evidence that implicates aberrant RAG1/2 activity in lymphoid tumor development and premature immunosenescence.


Asunto(s)
Reordenamiento Génico/genética , Proteínas de Homeodominio/genética , Mutación Missense , Inmunodeficiencia Combinada Grave/genética , Envejecimiento/genética , Envejecimiento/inmunología , Sustitución de Aminoácidos/fisiología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Técnicas de Sustitución del Gen , Homocigoto , Linfoma/genética , Linfoma/inmunología , Ratones , Ratones Transgénicos , Mutación Missense/fisiología , Fenotipo , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/patología , Linfocitos T/inmunología , Linfocitos T/patología , Neoplasias del Timo/genética , Neoplasias del Timo/inmunología , Exones VDJ
17.
Cell ; 135(1): 85-96, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18854157

RESUMEN

The Mre11/Rad50/NBS1 (MRN) complex maintains genomic stability by bridging DNA ends and initiating DNA damage signaling through activation of the ATM kinase. Mre11 possesses DNA nuclease activities that are highly conserved in evolution but play unknown roles in mammals. To define the functions of Mre11, we engineered targeted mouse alleles that either abrogate nuclease activities or inactivate the entire MRN complex. Mre11 nuclease deficiency causes a striking array of phenotypes indistinguishable from the absence of MRN, including early embryonic lethality and dramatic genomic instability. We identify a crucial role for the nuclease activities in homology-directed double-strand-break repair and a contributing role in activating the ATR kinase. However, the nuclease activities are not required to activate ATM after DNA damage or telomere deprotection. Therefore, nucleolytic processing by Mre11 is an essential function of fundamental importance in DNA repair, distinct from MRN control of ATM signaling.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Línea Celular Transformada , Proliferación Celular , Roturas del ADN de Doble Cadena , Daño del ADN , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Fibroblastos/metabolismo , Proteína Homóloga de MRE11 , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Recombinación Genética , Telómero/metabolismo , Proteínas Supresoras de Tumor/metabolismo
18.
Cancer Res ; 67(20): 9721-30, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17942902

RESUMEN

Mutations in the adenomatous polyposis coli (APC) gene are pivotal in colorectal tumorigenesis. Existing mouse intestinal tumor models display mainly small intestinal lesions and carcinomas are rare. We defined human CDX2 sequences conferring colon epithelium-preferential transgene expression in the adult mouse. Mice carrying a CDX2P-NLS Cre recombinase transgene and a loxP-targeted Apc allele developed mainly colorectal tumors, with carcinomas seen in 6 of 36 (17%) of mice followed for 300 days. Like human colorectal lesions, the mouse tumors showed biallelic Apc inactivation, beta-catenin dysregulation, global DNA hypomethylation, and aneuploidy. The predominantly distal colon and rectal distribution of tumors seen in mice where one Apc allele was inactivated in epithelial cells from distal ileum to rectum suggests that regional differences in the intestinal tract in the frequency and nature of secondary genetic and epigenetic events associated with adenoma outgrowth have a contributing role in determining where adenomas develop. The presence of large numbers of small intestine tumors seemed to inhibit colorectal tumor development in the mouse, and gender-specific effects on tumor multiplicity in the distal mouse colon and rectum mimic the situation in humans where males have a larger number of advanced adenomas and carcinomas in the distal colon and rectum than females. The mouse model of colon-preferential gene targeting described here should facilitate efforts to define novel factors and mechanisms contributing to human colon tumor pathogenesis, as well as work on tumor-promoting environmental factors and agents and strategies for cancer prevention and treatment.


Asunto(s)
Adenoma/genética , Adenoma/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Genes APC , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Alelos , Animales , Factor de Transcripción CDX2 , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Integrasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Señales de Localización Nuclear/genética , Regiones Promotoras Genéticas
19.
Chromosome Res ; 15(8): 1001-13, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18185984

RESUMEN

Telomeres serve to protect the ends of chromosomes, and failure to maintain telomeres can lead to dramatic genomic instability. Human TPP1 was identified as a protein which interacts with components of a telomere cap complex, but does not directly bind to telomeric DNA. While biochemical interactions indicate a function in telomere biology, much remains to be learned regarding the roles of TPP1 in vivo. We previously reported the positional cloning of the gene responsible for the adrenocortical dysplasia (acd) mouse phenotype, which revealed a mutation in the mouse homologue encoding TPP1. We find that cells from homozygous acd mice harbor chromosomes fused at telomere sequences, demonstrating a role in telomere protection in vivo. Surprisingly, our studies also reveal fusions and radial structures lacking internal telomere sequences, which are not anticipated from a simple deficiency in telomere protection. Employing spectral karyotyping and telomere FISH in a combined approach, we have uncovered a striking pattern; fusions with telomeric sequences involve nonhomologous chromosomes while those lacking telomeric sequences involve homologues. Together, these studies show that Tpp1/Acd plays a vital role in telomere protection, but likely has additional functions yet to be defined.


Asunto(s)
Enfermedades de la Corteza Suprarrenal/genética , Inestabilidad Genómica , Proteínas de Unión a Telómeros/genética , Telómero/fisiología , Enfermedades de la Corteza Suprarrenal/patología , Anafase , Animales , Células Cultivadas , Cromosomas/genética , Fibroblastos , Humanos , Técnicas para Inmunoenzimas , Hibridación Fluorescente in Situ , Cariotipificación , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Shelterina , Cariotipificación Espectral , Proteínas de Unión a Telómeros/metabolismo
20.
Genetics ; 174(3): 1115-33, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16980402

RESUMEN

The inactive X chromosome of female mammals displays several properties of heterochromatin including late replication, histone H4 hypoacetylation, histone H3 hypomethylation at lysine-4, and methylated CpG islands. We show that cre-Lox-mediated excision of 21 kb from both Xist alleles in female mouse fibroblasts led to the appearance of two histone modifications throughout the inactive X chromosome usually associated with euchromatin: histone H4 acetylation and histone H3 lysine-4 methylation. Despite these euchromatic properties, the inactive X chromosome was replicated even later in S phase than in wild-type female cells. Homozygosity for the deletion also caused regions of the active X chromosome that are associated with very high concentrations of LINE-1 elements to be replicated very late in S phase. Extreme late replication is a property of fragile sites and the 21-kb deletions destabilized the DNA of both X chromosomes, leading to deletions and translocations. This was accompanied by the phosphorylation of p53 at serine-15, an event that occurs in response to DNA damage, and the accumulation of gamma-H2AX, a histone involved in DNA repair, on the X chromosome. The Xist locus therefore maintains the DNA stability of both X chromosomes.


Asunto(s)
Momento de Replicación del ADN , Eliminación de Gen , Heterocromatina , ARN no Traducido/genética , Cromosoma X , Acetilación , Animales , Línea Celular Transformada , Transformación Celular Viral , Células Cultivadas , Replicación del ADN , Embrión de Mamíferos , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Histonas/biosíntesis , Metilación , Ratones , Fosforilación , ARN Largo no Codificante , ARN Mensajero/análisis , Cariotipificación Espectral , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...