Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 117(1): 212-223, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129829

RESUMEN

AIMS: Cyclophilin-D is a well-known regulator of the mitochondrial permeability transition pore (PTP), the main effector of cardiac ischaemia/reperfusion injury. However, the binding of CypD to the PTP is poorly understood. Cysteine 202 (C202) of CypD is highly conserved among species and can undergo redox-sensitive post-translational modifications. We investigated whether C202 regulates the opening of PTP. METHODS AND RESULTS: We developed a knock-in mouse model using CRISPR where CypD-C202 was mutated to a serine (C202S). Infarct size is reduced in CypD-C202S Langendorff perfused hearts compared to wild type (WT). Cardiac mitochondria from CypD-C202S mice also have higher calcium retention capacity compared to WT. Therefore, we hypothesized that oxidation of C202 might target CypD to the PTP. Indeed, isolated cardiac mitochondria subjected to oxidative stress exhibit less binding of CypD-C202S to the proposed PTP component F1F0-ATP-synthase. We previously found C202 to be S-nitrosylated in ischaemic preconditioning. Cysteine residues can also undergo S-acylation, and C202 matched an S-acylation motif. S-acylation of CypD-C202 was assessed using a resin-assisted capture (Acyl-RAC). WT hearts are abundantly S-acylated on CypD C202 under baseline conditions indicating that S-acylation on C202 per se does not lead to PTP opening. CypD C202S knock-in hearts are protected from ischaemia/reperfusion injury suggesting further that lack of CypD S-acylation at C202 is not detrimental (when C is mutated to S) and does not induce PTP opening. However, we find that ischaemia leads to de-acylation of C202 and that calcium overload in isolated mitochondria promotes de-acylation of CypD. Furthermore, a high bolus of calcium in WT cardiac mitochondria displaces CypD from its physiological binding partners and possibly renders it available for interaction with the PTP. CONCLUSIONS: Taken together the data suggest that with ischaemia CypD is de-acylated at C202 allowing the free cysteine residue to undergo oxidation during the first minutes of reperfusion which in turn targets it to the PTP.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/enzimología , Peptidil-Prolil Isomerasa F/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Calcio/metabolismo , Peptidil-Prolil Isomerasa F/genética , Cisteína , Modelos Animales de Enfermedad , Preparación de Corazón Aislado , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Cardíacas/patología , Mutación , Infarto del Miocardio/enzimología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Oxidación-Reducción , Estrés Oxidativo
3.
Am J Respir Cell Mol Biol ; 63(2): 185-197, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32338995

RESUMEN

The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1ß secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-ß-activated kinase 1), IκKß (inhibitor of nuclear factor κ B kinase subunit ß), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKß, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKß, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKß/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.


Asunto(s)
Apolipoproteínas E/metabolismo , Asma/metabolismo , Quimiocina CXCL5/metabolismo , Células Epiteliales/metabolismo , Sistema Respiratorio/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo , Quimiocinas/metabolismo , Humanos , Inflamación/metabolismo , Neutrófilos/metabolismo , ARN Mensajero/metabolismo
4.
JCI Insight ; 5(4)2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32017711

RESUMEN

The mitochondrial calcium uniporter is widely accepted as the primary route of rapid calcium entry into mitochondria, where increases in matrix calcium contribute to bioenergetics but also mitochondrial permeability and cell death. Hence, regulation of uniporter activity is critical to mitochondrial homeostasis. The uniporter subunit EMRE is known to be an essential regulator of the channel-forming protein MCU in cell culture, but EMRE's impact on organismal physiology is less understood. Here we characterize a mouse model of EMRE deletion and show that EMRE is indeed required for mitochondrial calcium uniporter function in vivo. EMRE-/- mice are born less frequently; however, the mice that are born are viable, healthy, and do not manifest overt metabolic impairment, at rest or with exercise. Finally, to investigate the role of EMRE in disease processes, we examine the effects of EMRE deletion in a muscular dystrophy model associated with mitochondrial calcium overload.


Asunto(s)
Canales de Calcio/fisiología , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Animales , Calcio/metabolismo , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Daño por Reperfusión Miocárdica/metabolismo
5.
Mol Cell ; 69(4): 689-698.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429925

RESUMEN

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor ß (TGF-ß) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Ácidos Grasos/química , 3-Hidroxiacil-CoA Deshidrogenasas , Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferasa , Animales , Isomerasas de Doble Vínculo Carbono-Carbono , Células Cultivadas , Endotelio Vascular/citología , Enoil-CoA Hidratasa , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Racemasas y Epimerasas , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
6.
Arch Biochem Biophys ; 613: 12-22, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27983949

RESUMEN

We sought to explore the fate of the fatty acid synthesis pathway in human fibroblasts exposed to DNA damaging agents capable of inducing senescence, a state of irreversible growth arrest. Induction of premature senescence by doxorubicin or hydrogen peroxide led to a decrease in protein and mRNA levels of acetyl-CoA carboxylase 1 (ACC1), the enzyme that catalyzes the rate-limiting step in fatty-acid biosynthesis. ACC1 decay accompanied the activation of the DNA damage response (DDR), and resulted in decreased lipid synthesis. A reduction in protein and mRNA levels of ACC1 and in lipid synthesis was also observed in human primary fibroblasts that underwent replicative senescence. We also explored the consequences of inhibiting fatty acid synthesis in proliferating non-transformed cells. Using shRNA technology, we knocked down ACC1 in human fibroblasts. Interestingly, this metabolic perturbation was sufficient to arrest proliferation and trigger the appearance of several markers of the DDR and increase senescence associated ß-galactosidase activity. Reactive oxygen species and p38 mitogen activated protein kinase phosphorylation participated in the induction of senescence. Similar results were obtained upon silencing of fatty acid synthase (FAS) expression. Together our results point towards a tight coordination of fatty acid synthesis and cell proliferation in human fibroblasts.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proliferación Celular , Senescencia Celular , Ácidos Grasos/química , Fibroblastos/enzimología , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Lentivirus , Lípidos/química , Sistema de Señalización de MAP Quinasas , Oxidantes/química , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Cell Rep ; 16(6): 1561-1573, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27477272

RESUMEN

MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1(-/-) mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1(-/-) mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1(-/-) mice show marked, spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1(-/-) mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Transporte de Catión/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética
8.
Mol Cell ; 60(4): 685-96, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26549682

RESUMEN

Alterations in mitophagy have been increasingly linked to aging and age-related diseases. There are, however, no convenient methods to analyze mitophagy in vivo. Here, we describe a transgenic mouse model in which we expressed a mitochondrial-targeted form of the fluorescent reporter Keima (mt-Keima). Keima is a coral-derived protein that exhibits both pH-dependent excitation and resistance to lysosomal proteases. Comparison of a wide range of primary cells and tissues generated from the mt-Keima mouse revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima mice to analyze how mitophagy is altered by conditions including diet, oxygen availability, Huntingtin transgene expression, the absence of macroautophagy (ATG5 or ATG7 expression), an increase in mitochondrial mutational load, the presence of metastatic tumors, and normal aging. The ability to assess mitophagy under a host of varying environmental and genetic perturbations suggests that the mt-Keima mouse should be a valuable resource.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Mitofagia , Envejecimiento/fisiología , Animales , Proteínas Luminiscentes/genética , Ratones , Especificidad de Órganos , Oxígeno/metabolismo
9.
Nat Cell Biol ; 15(12): 1464-72, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24212091

RESUMEN

Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU(-/-) mice have no apparent capacity to rapidly uptake calcium. Whereas basal metabolism seems unaffected, the skeletal muscle of MCU(-/-) mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU(-/-) mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU(-/-) mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not seem to protect MCU(-/-) cells and tissues from cell death, although MCU(-/-) hearts fail to respond to the PTP inhibitor cyclosporin A. Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.


Asunto(s)
Canales de Calcio/genética , Calcio/fisiología , Mitocondrias Musculares/metabolismo , Animales , Apoptosis , Canales de Calcio/deficiencia , Cardiotónicos/farmacología , Células Cultivadas , Tolerancia al Ejercicio/genética , Femenino , Fibroblastos/metabolismo , Estudios de Asociación Genética , Isoproterenol/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fenotipo , Complejo Piruvato Deshidrogenasa/metabolismo
10.
Nat Med ; 19(10): 1281-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056772

RESUMEN

Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high-molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.


Asunto(s)
Autofagia , Células Endoteliales/metabolismo , Factor de von Willebrand/metabolismo , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Exocitosis , Hemostasis , Humanos , Proteínas Asociadas a Microtúbulos/genética , Enzimas Activadoras de Ubiquitina/genética , Cuerpos de Weibel-Palade/metabolismo
11.
Nature ; 492(7428): 199-204, 2012 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-23201684

RESUMEN

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Asunto(s)
Necrosis/enzimología , Sirtuina 2/genética , Sirtuina 2/metabolismo , Acetilación , Animales , Línea Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Células Jurkat , Masculino , Ratones , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
12.
Science ; 336(6078): 225-8, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22499945

RESUMEN

Withdrawal of nutrients triggers an exit from the cell division cycle, the induction of autophagy, and eventually the activation of cell death pathways. The relation, if any, among these events is not well characterized. We found that starved mouse embryonic fibroblasts lacking the essential autophagy gene product Atg7 failed to undergo cell cycle arrest. Independent of its E1-like enzymatic activity, Atg7 could bind to the tumor suppressor p53 to regulate the transcription of the gene encoding the cell cycle inhibitor p21(CDKN1A). With prolonged metabolic stress, the absence of Atg7 resulted in augmented DNA damage with increased p53-dependent apoptosis. Inhibition of the DNA damage response by deletion of the protein kinase Chk2 partially rescued postnatal lethality in Atg7(-/-) mice. Thus, when nutrients are limited, Atg7 regulates p53-dependent cell cycle and cell death pathways.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Estrés Fisiológico , Proteína p53 Supresora de Tumor/metabolismo , Enzimas Activadoras de Ubiquitina/metabolismo , Animales , Apoptosis , Autofagia , Proteína 7 Relacionada con la Autofagia , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Células Cultivadas , Quinasa de Punto de Control 2 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/genética , Transcripción Genética , Enzimas Activadoras de Ubiquitina/genética
13.
Cell Cycle ; 11(7): 1383-92, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22421146

RESUMEN

Oncogene-induced senescence (OIS) is characterized by permanent growth arrest and the acquisition of a secretory, pro-inflammatory state. Increasingly, OIS is viewed as an important barrier to tumorgenesis. Surprisingly, relatively little is known about the metabolic changes that accompany and therefore may contribute to OIS. Here, we have performed a metabolomic and bioenergetic analysis of Ras-induced senescence. Profiling approximately 300 different intracellular metabolites reveals that cells that have undergone OIS develop a unique metabolic signature that differs markedly from cells undergoing replicative senescence. A number of lipid metabolites appear uniquely increased in OIS cells, including a marked increase in the level of certain intracellular long chain fatty acids. Functional studies reveal that this alteration in the metabolome reflects substantial changes in overall lipid metabolism. In particular, Ras-induced senescent cells manifest a decline in lipid synthesis and a significant increase in fatty acid oxidation. Increased fatty acid oxidation results in an unexpectedly high rate of basal oxygen consumption in cells that have undergone OIS. Pharmacological or genetic inhibition of carnitine palmitoyltransferase 1, the rate-limiting step in mitochondrial fatty acid oxidation, restores a pre-senescent metabolic rate and, surprisingly, selectively inhibits the secretory, pro-inflammatory state that accompanies OIS. Thus, Ras-induced senescent cells demonstrate profound alterations in their metabolic and bioenergetic profiles, particularly with regards to the levels, synthesis and oxidation of free fatty acids. Furthermore, the inflammatory phenotype that accompanies OIS appears to be related to these underlying changes in cellular metabolism.


Asunto(s)
Senescencia Celular/genética , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Oncogenes , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Metabolómica/métodos , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Consumo de Oxígeno
14.
Sci Signal ; 4(158): ra6, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21285411

RESUMEN

The contribution of the Wnt pathway has been extensively characterized in embryogenesis, differentiation, and stem cell biology but not in mammalian metabolism. Here, using in vivo gain- and loss-of-function models, we demonstrate an important role for Wnt signaling in hepatic metabolism. In particular, ß-catenin, the downstream mediator of canonical Wnt signaling, altered serum glucose concentrations and regulated hepatic glucose production. ß-Catenin also modulated hepatic insulin signaling. Furthermore, ß-catenin interacted with the transcription factor FoxO1 in livers from mice under starved conditions. The interaction of FoxO1 with ß-catenin regulated the transcriptional activation of the genes encoding glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), the two rate-limiting enzymes in hepatic gluconeogenesis. Moreover, starvation induced the hepatic expression of mRNAs encoding different Wnt isoforms. In addition, nutrient deprivation appeared to favor the association of ß-catenin with FoxO family members, rather than with members of the T cell factor of transcriptional activators. Notably, in a model of diet-induced obesity, hepatic deletion of ß-catenin improved overall metabolic homeostasis. These observations implicate Wnt signaling in the modulation of hepatic metabolism and raise the possibility that Wnt signaling may play a similar role in the metabolic regulation of other tissues.


Asunto(s)
Glucosa/metabolismo , Hígado/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Citosol/metabolismo , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa-6-Fosfatasa/genética , Hepatocitos/citología , Hepatocitos/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Hígado/citología , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/fisiopatología , Fosfoenolpiruvato Carboxilasa/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inanición/metabolismo , Inanición/fisiopatología , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
15.
Aging (Albany NY) ; 1(4): 425-37, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20157526

RESUMEN

Impaired or deficient autophagy is believed to cause or contribute to aging, as well as a number of age-related pathologies. The exact mechanism through which alterations in autophagy induce these various pathologies is not well understood. Here we describe the creation of two in vivo mouse models that allow for the characterization of the alteration in mitochondrial function and the contribution of the corresponding oxidative stress following deletion of Atg7. Using these models we demonstrate that isolated mitochondria obtained from Atg7(-/-) skeletal muscle exhibit a significant defect in mitochondrial respiration. We further show that cells derived from Atg7(-/-) mice have an altered metabolic profile characterized by decreased resting mitochondrial oxygen consumption and a compensatory increase in basal glycolytic rates. Atg7(-/-)cells also exhibit evidence for increased steady state levels of reactive oxygen species. The observed mitochondrial dysfunction and oxidative stress is also evident in a mouse model where Atg7 is deleted within the pancreatic beta cell. In this model, the simple administration of an antioxidant can significantly ameliorate the physiological impairment in glucose-stimulated insulin secretion. Taken together, these results demonstrate the potential role of mitochondrial dysfunction and oxidative stress in autophagy related pathology.


Asunto(s)
Autofagia/fisiología , Mitocondrias/fisiología , Estrés Oxidativo/fisiología , Animales , Proteína 7 Relacionada con la Autofagia , Regulación de la Expresión Génica/fisiología , Glucosa/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
16.
Science ; 317(5839): 803-6, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17690294

RESUMEN

The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.


Asunto(s)
Envejecimiento/fisiología , Senescencia Celular/fisiología , Glucuronidasa/metabolismo , Transducción de Señal , Células Madre/fisiología , Proteínas Wnt/metabolismo , Animales , Apoptosis , Densidad Ósea , Huesos/metabolismo , Recuento de Células , Línea Celular , Forma de la Célula , Glucuronidasa/química , Glucuronidasa/genética , Humanos , Proteínas Klotho , Ratones , Ratones Transgénicos , Estructura Terciaria de Proteína , Células Madre/citología , Proteínas Wnt/antagonistas & inhibidores , Proteína Wnt1/metabolismo , Proteína Wnt3
17.
J Biol Chem ; 281(15): 10555-60, 2006 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-16481327

RESUMEN

Previous studies have determined that mice with a homozygous deletion in the adapter protein p66(shc) have an extended life span and that cells derived from these mice exhibit lower levels of reactive oxygen species. Here we demonstrate that a fraction of p66(shc) localizes to the mitochondria and that p66(shc-/-) fibroblasts have altered mitochondrial energetics. In particular, despite similar cytochrome content, under basal conditions, the oxygen consumption of spontaneously immortalized p66(shc-/-) mouse embryonic fibroblasts were lower than similarly maintained wild type cells. Differences in oxygen consumption were particularly evident under chemically uncoupled conditions, demonstrating that p66(shc-/-) cells have a reduction in both their resting and maximal oxidative capacity. We further demonstrate that reconstitution of p66(shc) expression in p66(shc-/-) cells increases oxygen consumption. The observed defect in oxidative capacity seen in p66(shc-/-) cells is partially offset by augmented levels of aerobic glycolysis. This metabolic switch is manifested by p66(shc-/-) cells exhibiting an increase in lactate production and a stricter requirement for extracellular glucose in order to maintain intracellular ATP levels. In addition, using an in vivo NADH photobleaching technique, we demonstrate that mitochondrial NADH metabolism is reduced in p66(shc-/-) cells. These results demonstrate that p66(shc) regulates mitochondrial oxidative capacity and suggest that p66(shc) may extend life span by repartitioning metabolic energy conversion away from oxidative and toward glycolytic pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Mitocondrias/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Adenosina Trifosfato/química , Animales , Fibroblastos/metabolismo , Glucólisis , Células HeLa , Humanos , Ratones , Ratones Transgénicos , NAD/metabolismo , Estrés Oxidativo , Oxígeno/química , Oxígeno/metabolismo , Consumo de Oxígeno , Células PC12 , Fenotipo , Ratas , Proteínas Adaptadoras de la Señalización Shc , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Fracciones Subcelulares , Factores de Tiempo
18.
J Biol Chem ; 280(16): 16456-60, 2005 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-15716268

RESUMEN

In lower organisms, increased expression of the NAD-dependent deacetylase Sir2 augments lifespan. The mechanism through which this life extension is mediated remains incompletely understood. Here we have examined the cellular effects of overexpression of SIRT1, the closest mammalian ortholog of Sir2. In PC12 cells, increased expression of the NAD-dependent deacetylase SIRT1 reduces cellular oxygen consumption by approximately 25%. We further demonstrate that SIRT1 expression can alter the transcriptional activity of the mitochondrial biogenesis coactivator PGC-1alpha. In addition, SIRT1 and PGC-1alpha directly interact and can be co-immunoprecipitated as a molecular complex. A single amino acid mutation in the putative ADP-ribosyltransferase domain of SIRT1 inhibits the interaction of SIRT1 with PGC-1alpha but does not effect the interaction of SIRT1 with either p53 or Foxo3a. We further show that PGC-1alpha is acetylated in vivo. This acetylation is augmented by treatment with the SIRT1 inhibitor nicotinamide or by expression of the transcriptional coactivator p300. Finally we demonstrate that SIRT1 catalyzes PGC-1alpha deacetylation both in vitro and in vivo. These results provide a direct link between the sirtuins, a family of proteins linked to lifespan determination and PGC-1alpha, a coactivator that regulates cellular metabolism.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Células HeLa , Humanos , NAD/metabolismo , Proteínas del Tejido Nervioso , Niacinamida/metabolismo , Proteínas Nucleares/metabolismo , Consumo de Oxígeno/fisiología , Células PC12 , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas de Unión al ARN/genética , Ratas , Sirtuina 1 , Sirtuinas/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Science ; 306(5704): 2105-8, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15604409

RESUMEN

Nutrient availability regulates life-span in a wide range of organisms. We demonstrate that in mammalian cells, acute nutrient withdrawal simultaneously augments expression of the SIRT1 deacetylase and activates the Forkhead transcription factor Foxo3a. Knockdown of Foxo3a expression inhibited the starvation-induced increase in SIRT1 expression. Stimulation of SIRT1 transcription by Foxo3a was mediated through two p53 binding sites present in the SIRT1 promoter, and a nutrient-sensitive physical interaction was observed between Foxo3a and p53. SIRT1 expression was not induced in starved p53-deficient mice. Thus, in mammalian cells, p53, Foxo3a, and SIRT1, three proteins separately implicated in aging, constitute a nutrient-sensing pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Sirtuinas/metabolismo , Inanición , Factores de Transcripción/metabolismo , Tejido Adiposo/metabolismo , Animales , Sitios de Unión , Medios de Cultivo , Medio de Cultivo Libre de Suero , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Eliminación de Gen , Genes p53 , Glucosa , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Células PC12 , Regiones Promotoras Genéticas , ARN Interferente Pequeño/farmacología , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/metabolismo , Suero , Sirtuina 1 , Sirtuinas/genética , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo
20.
J Biol Chem ; 277(30): 27385-92, 2002 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-12011039

RESUMEN

Cell death can proceed through at least two distinct pathways. Apoptosis is an energy-dependent process characterized morphologically by cell shrinkage, whereas oncosis is a form of cell death induced by energy depletion and initially characterized by cell swelling. We demonstrate in HeLa cells but not in normal diploid fibroblasts that modest increases in the expression level of uncoupling protein 2 (UCP-2) leads to a rapid and dramatic fall in mitochondrial membrane potential and to a reduction of mitochondrial NADH and intracellular ATP. In HeLa cells, increased UCP-2 expression leads to a form of cell death that is not inhibited by the anti-apoptotic gene product Bcl-2 and that morphologically resembles cellular oncosis. We further describe the creation of a dominant interfering mutant of UCP-2 whose expression increases resting mitochondrial membrane potential and selectively increases the resistance to cell death following oncotic but not apoptotic stimuli. These results suggest that distinct genetic programs may regulate the cellular response to either apoptotic or oncotic stimuli.


Asunto(s)
Dimaprit/análogos & derivados , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana , Proteínas Mitocondriales , Proteínas/metabolismo , Apoptosis , Western Blotting , Muerte Celular , Separación Celular , Dimaprit/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Inmunohistoquímica , Canales Iónicos , Proteínas Luminiscentes/metabolismo , Potenciales de la Membrana , Microscopía Fluorescente , Mitocondrias/metabolismo , Mutación , NAD/metabolismo , Neoplasias/metabolismo , Plásmidos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Retroviridae/metabolismo , Factores de Tiempo , Transfección , Proteína Desacopladora 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...