Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 223(4)2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36753530

RESUMEN

Organisms rely on chemical cues in their environment to indicate the presence or absence of food, reproductive partners, predators, or other harmful stimuli. In the nematode Caenorhabditis elegans, the bilaterally symmetric pair of ASH sensory neurons serves as the primary nociceptors. ASH activation by aversive stimuli leads to backward locomotion and stimulus avoidance. We previously reported a role for guanylyl cyclases in dampening nociceptive sensitivity that requires an innexin-based gap junction network to pass cGMP between neurons. Here, we report that animals lacking function of the gap junction component INX-20 are hypersensitive in their behavioral response to both soluble and volatile chemical stimuli that signal through G protein-coupled receptor pathways in ASH. We find that expressing inx-20 in the ADL and AFD sensory neurons is sufficient to dampen ASH sensitivity, which is supported by new expression analysis of endogenous INX-20 tagged with mCherry via the CRISPR-Cas9 system. Although ADL does not form gap junctions directly with ASH, it does so via gap junctions with the interneuron RMG and the sensory neuron ASK. Ablating either ADL or RMG and ASK also resulted in nociceptive hypersensitivity, suggesting an important role for RMG/ASK downstream of ADL in the ASH modulatory circuit. This work adds to our growing understanding of the repertoire of ways by which ASH activity is regulated via its connectivity to other neurons and identifies a previously unknown role for ADL and RMG in the modulation of aversive behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Uniones Comunicantes , Nocicepción , Células Receptoras Sensoriales/metabolismo
2.
Curr Biol ; 32(20): 4372-4385.e7, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36075218

RESUMEN

The effect of the detailed connectivity of a neural circuit on its function and the resulting behavior of the organism is a key question in many neural systems. Here, we study the circuit for nociception in C. elegans, which is composed of the same neurons in the two sexes that are wired differently. We show that the nociceptive sensory neurons respond similarly in the two sexes, yet the animals display sexually dimorphic behaviors to the same aversive stimuli. To uncover the role of the downstream network topology in shaping behavior, we learn and simulate network models that replicate the observed dimorphic behaviors and use them to predict simple network rewirings that would switch behavior between the sexes. We then show experimentally that these subtle synaptic rewirings indeed flip behavior. Interestingly, when presented with aversive cues, rewired males were compromised in finding mating partners, suggesting that network topologies that enable efficient avoidance of noxious cues have a reproductive "cost." Our results present a deconstruction of the design of a neural circuit that controls sexual behavior and how to reprogram it.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Masculino , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Nocicepción , Sistema Nervioso , Células Receptoras Sensoriales/fisiología
5.
Elife ; 102021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34165428

RESUMEN

Many neuronal identity regulators are expressed in distinct populations of cells in the nervous system, but their function is often analyzed only in specific isolated cellular contexts, thereby potentially leaving overarching themes in gene function undiscovered. We show here that the Caenorhabditis elegans Prop1-like homeobox gene unc-42 is expressed in 15 distinct sensory, inter- and motor neuron classes throughout the entire C. elegans nervous system. Strikingly, all 15 neuron classes expressing unc-42 are synaptically interconnected, prompting us to investigate whether unc-42 controls the functional properties of this circuit and perhaps also the assembly of these neurons into functional circuitry. We found that unc-42 defines the routes of communication between these interconnected neurons by controlling the expression of neurotransmitter pathway genes, neurotransmitter receptors, neuropeptides, and neuropeptide receptors. Anatomical analysis of unc-42 mutant animals reveals defects in axon pathfinding and synaptic connectivity, paralleled by expression defects of molecules involved in axon pathfinding, cell-cell recognition, and synaptic connectivity. We conclude that unc-42 establishes functional circuitry by acting as a terminal selector of functionally connected neuron types. We identify a number of additional transcription factors that are also expressed in synaptically connected neurons and propose that terminal selectors may also function as 'circuit organizer transcription factors' to control the assembly of functional circuitry throughout the nervous system. We hypothesize that such organizational properties of transcription factors may be reflective of not only ontogenetic, but perhaps also phylogenetic trajectories of neuronal circuit establishment.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Proteínas de Homeodominio/genética , Interneuronas/fisiología , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/embriología , Proteínas de Homeodominio/metabolismo , Sinapsis/metabolismo
6.
Genetics ; 217(3)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33693646

RESUMEN

Chemosensory neurons translate perception of external chemical cues, including odorants, tastants, and pheromones, into information that drives attraction or avoidance motor programs. In the laboratory, robust behavioral assays, coupled with powerful genetic, molecular and optical tools, have made Caenorhabditis elegans an ideal experimental system in which to dissect the contributions of individual genes and neurons to ethologically relevant chemosensory behaviors. Here, we review current knowledge of the neurons, signal transduction molecules and regulatory mechanisms that underlie the response of C. elegans to chemicals, including pheromones. The majority of identified molecules and pathways share remarkable homology with sensory mechanisms in other organisms. With the development of new tools and technologies, we anticipate that continued study of chemosensory signal transduction and processing in C. elegans will yield additional new insights into the mechanisms by which this animal is able to detect and discriminate among thousands of chemical cues with a limited sensory neuron repertoire.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Transducción de Señal , Animales , Conducta Animal , Caenorhabditis elegans , Plasticidad Neuronal
9.
PLoS Genet ; 15(10): e1008341, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658255

RESUMEN

In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Conexinas/genética , Sinapsis Eléctricas/genética , Nociceptores/metabolismo , Quinina/farmacología , Animales , Conducta Animal/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , GMP Cíclico/genética , Sinapsis Eléctricas/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/genética , Nociceptores/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
10.
Genetics ; 213(1): 59-77, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31331946

RESUMEN

cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases, and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue-light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles, and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes, and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R, and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal, and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.


Asunto(s)
GMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Fluorescentes Verdes/metabolismo , Optogenética/métodos , Animales , Caenorhabditis elegans , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Opsinas/genética , Opsinas/metabolismo , Imagen Óptica/métodos , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/metabolismo
11.
Genetics ; 212(3): 667-690, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31053593

RESUMEN

Signaling pathways can regulate biological responses by the transcriptional regulation of target genes. In yeast, multiple signaling pathways control filamentous growth, a morphogenetic response that occurs in many species including fungal pathogens. Here, we examine the role of signaling pathways that control filamentous growth in regulating adhesion-dependent surface responses, including mat formation and colony patterning. Expression profiling and mutant phenotype analysis showed that the major pathways that regulate filamentous growth [filamentous growth MAPK (fMAPK), RAS, retrograde (RTG), RIM101, RPD3, ELP, SNF1, and PHO85] also regulated mat formation and colony patterning. The chromatin remodeling complex, SAGA, also regulated these responses. We also show that the RAS and RTG pathways coregulated a common set of target genes, and that SAGA regulated target genes known to be controlled by the fMAPK, RAS, and RTG pathways. Analysis of surface growth-specific targets identified genes that respond to low oxygen, high temperature, and desiccation stresses. We also explore the question of why cells make adhesive contacts in colonies. Cell adhesion contacts mediated by the coregulated target and adhesion molecule, Flo11p, deterred entry into colonies by macroscopic predators and impacted colony temperature regulation. The identification of new regulators (e.g., SAGA), and targets of surface growth in yeast may provide insights into fungal pathogenesis in settings where surface growth and adhesion contributes to virulence.


Asunto(s)
Biopelículas , Adhesión Celular , Regulación Fúngica de la Expresión Génica , Hifa/genética , Saccharomyces cerevisiae/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Hifa/crecimiento & desarrollo , Sistema de Señalización de MAP Quinasas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/patogenicidad , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Virulencia/genética , Proteínas ras/genética , Proteínas ras/metabolismo
12.
G3 (Bethesda) ; 8(7): 2389-2398, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29760200

RESUMEN

G protein-coupled receptors are 7-pass transmembrane receptors that couple to heterotrimeric G proteins to mediate cellular responses to a diverse array of stimuli. Understanding the mechanisms that regulate G protein-coupled receptors is crucial to manipulating their signaling for therapeutic benefit. One key regulatory mechanism that contributes to the functional diversity of many signaling proteins is post-translational modification. Whereas phosphorylation remains the best studied of such modifications, arginine methylation by protein arginine methyltransferases is emerging as a key regulator of protein function. We previously published the first functional evidence that arginine methylation of G protein-coupled receptors modulates their signaling. We report here a third receptor that is regulated by arginine methylation, the Caenorhabditis elegans SER-2 tyramine receptor. We show that arginines within a putative methylation motif in the third intracellular loop of SER-2 are methylated by PRMT5 in vitro Our data also suggest that this modification enhances SER-2 signaling in vivo to modulate animal behavior. The identification of a third G protein-coupled receptor to be functionally regulated by arginine methylation suggests that this post-translational modification may be utilized to regulate signaling through a broad array of G protein-coupled receptors.


Asunto(s)
Conducta Animal , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores de Amina Biogénica/metabolismo , Animales , Animales Modificados Genéticamente , Arginina , Humanos , Locomoción/genética , Metilación , Transducción de Señal
13.
PLoS Genet ; 12(7): e1006153, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27459302

RESUMEN

All animals rely on their ability to sense and respond to their environment to survive. However, the suitability of a behavioral response is context-dependent, and must reflect both an animal's life history and its present internal state. Based on the integration of these variables, an animal's needs can be prioritized to optimize survival strategies. Nociceptive sensory systems detect harmful stimuli and allow for the initiation of protective behavioral responses. The polymodal ASH sensory neurons are the primary nociceptors in C. elegans. We show here that the guanylyl cyclase ODR-1 functions non-cell-autonomously to downregulate ASH-mediated aversive behaviors and that ectopic cGMP generation in ASH is sufficient to dampen ASH sensitivity. We define a gap junction neural network that regulates nociception and propose that decentralized regulation of ASH signaling can allow for rapid correlation between an animal's internal state and its behavioral output, lending modulatory flexibility to this hard-wired nociceptive neural circuit.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Uniones Comunicantes/genética , Guanilato Ciclasa/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , GMP Cíclico/genética , Uniones Comunicantes/fisiología , Red Nerviosa/fisiología , Nociceptores/metabolismo , Células Receptoras Sensoriales/fisiología
14.
Sci Signal ; 8(402): ra115, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26554819

RESUMEN

Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5-deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide-binding protein-coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins.


Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Receptores de Dopamina D2/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Arginina/química , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Biología Computacional , Secuencia Conservada , Dopamina/metabolismo , Dopamina/farmacología , Células HEK293 , Humanos , Locomoción/efectos de los fármacos , Locomoción/genética , Locomoción/fisiología , Metilación , Datos de Secuencia Molecular , Octanoles/farmacología , Odorantes , Proteína-Arginina N-Metiltransferasas/deficiencia , Proteína-Arginina N-Metiltransferasas/genética , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
15.
PLoS Genet ; 9(7): e1003619, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874221

RESUMEN

Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , GMP Cíclico/metabolismo , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Fosforilación , Proteínas RGS/genética , Proteínas RGS/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal/genética
16.
ACS Chem Biol ; 8(3): 608-16, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23227961

RESUMEN

Although the affinity optimization of protein binders is straightforward, engineering epitope specificity is more challenging. Targeting a specific surface patch is important because the biological relevance of protein binders depends on how they interact with the target. They are particularly useful to test hypotheses motivated by biochemical and structural studies. We used yeast display to engineer monobodies that bind a defined surface patch on the mitogen activated protein kinase (MAPK) Erk-2. The targeted area ("CD" domain) is known to control the specificity and catalytic efficiency of phosphorylation by the kinase by binding a linear peptide ("D" peptide) on substrates and regulators. An inhibitor of the interaction should thus be useful for regulating Erk-2 signaling in vivo. Although the CD domain constitutes only a small percentage of the surface area of the enzyme (~5%), sorting a yeast displayed monobody library with wild type (wt) Erk-2 and a rationally designed mutant led to isolation of high affinity clones with desired epitope specificity. The engineered binders inhibited the activity of Erk-2 in vitro and in mammalian cells. Furthermore, they specifically inhibited the activity of Erk-2 orthologs in yeast and suppressed a mutant phenotype in round worms caused by overactive MAPK signaling. The study therefore shows that positive and negative screening can be used to bias the evolution of epitope specificity and predictably design inhibitors of biologically relevant protein-protein interaction.


Asunto(s)
Epítopos/genética , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Ingeniería de Proteínas , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Caenorhabditis elegans/metabolismo , Fibronectinas/química , Fibronectinas/genética , Fibronectinas/metabolismo , Células HEK293 , Humanos , Proteína Quinasa 1 Activada por Mitógenos/química , Modelos Moleculares , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
17.
J Biol Chem ; 287(16): 12634-44, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22375004

RESUMEN

G protein-coupled receptor kinases (GRKs) are key regulators of signal transduction that specifically phosphorylate activated G protein-coupled receptors (GPCRs) to terminate signaling. Biochemical and crystallographic studies have provided great insight into mammalian GRK2/3 interactions and structure. However, despite extensive in vitro characterization, little is known about the in vivo contribution of these described GRK structural domains and interactions to proper GRK function in signal regulation. We took advantage of the disrupted chemosensory behavior characteristic of Caenorhabditis elegans grk-2 mutants to discern the interactions required for proper in vivo Ce-GRK-2 function. Informed by mammalian crystallographic and biochemical data, we introduced amino acid substitutions into the Ce-grk-2 coding sequence that are predicted to selectively disrupt GPCR phosphorylation, Gα(q/11) binding, Gßγ binding, or phospholipid binding. Changing the most amino-terminal residues, which have been shown in mammalian systems to be required specifically for GPCR phosphorylation but not phosphorylation of alternative substrates or recruitment to activated GPCRs, eliminated the ability of Ce-GRK-2 to restore chemosensory signaling. Disrupting interaction between the predicted Ce-GRK-2 amino-terminal α-helix and kinase domain, posited to stabilize GRKs in their active ATP- and GPCR-bound conformation, also eliminated Ce-GRK-2 chemosensory function. Finally, although changing residues within the RH domain, predicted to disrupt interaction with Gα(q/11), did not affect Ce-GRK-2 chemosensory function, disruption of the predicted PH domain-mediated interactions with Gßγ and phospholipids revealed that both contribute to Ce-GRK-2 function in vivo. Combined, we have demonstrated functional roles for broadly conserved GRK2/3 structural domains in the in vivo regulation of organismal behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Quinasa 2 del Receptor Acoplado a Proteína-G/química , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/química , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Conducta Animal/fisiología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/enzimología , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Datos de Secuencia Molecular , Mutagénesis , Neuronas/enzimología , Fosforilación/fisiología , Estructura Terciaria de Proteína , Transducción de Señal/fisiología
18.
PLoS One ; 6(9): e25047, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21957475

RESUMEN

The ability to modulate gene expression in response to sensory experience is critical to the normal development and function of the nervous system. Calcium is a key activator of the signal transduction cascades that mediate the process of translating a cellular stimulus into transcriptional changes. With the recent discovery that the mammalian Ca(v)1.2 calcium channel can be cleaved, enter the nucleus and act as a transcription factor to control neuronal gene expression, a more direct role for the calcium channels themselves in regulating transcription has begun to be appreciated. Here we report the identification of a nuclear localization sequence (NLS) in the C. elegans transient receptor potential vanilloid (TRPV) cation channel OCR-2. TRPV channels have previously been implicated in transcriptional regulation of neuronal genes in the nematode, although the precise mechanism remains unclear. We show that the NLS in OCR-2 is functional, being able to direct nuclear accumulation of a synthetic cargo protein as well as the carboxy-terminal cytosolic tail of OCR-2 where it is endogenously found. Furthermore, we discovered that a carboxy-terminal portion of the full-length channel can localize to the nucleus of neuronal cells. These results suggest that the OCR-2 TRPV cation channel may have a direct nuclear function in neuronal cells that was not previously appreciated.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Señales de Localización Nuclear/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación de la Expresión Génica , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Señales de Localización Nuclear/química , Receptores Odorantes/metabolismo , Canales Catiónicos TRPV
19.
Nat Nanotechnol ; 5(8): 602-6, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20581833

RESUMEN

Recently, optical stimulation has begun to unravel the neuronal processing that controls certain animal behaviours. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Here, we show an approach based on radio-frequency magnetic-field heating of nanoparticles to remotely activate temperature-sensitive cation channels in cells. Superparamagnetic ferrite nanoparticles were targeted to specific proteins on the plasma membrane of cells expressing TRPV1, and heated by a radio-frequency magnetic field. Using fluorophores as molecular thermometers, we show that the induced temperature increase is highly localized. Thermal activation of the channels triggers action potentials in cultured neurons without observable toxic effects. This approach can be adapted to stimulate other cell types and, moreover, may be used to remotely manipulate other cellular machinery for novel therapeutics.


Asunto(s)
Conducta Animal/efectos de la radiación , Calefacción/instrumentación , Canales Iónicos/efectos de la radiación , Nanopartículas/efectos de la radiación , Nanotecnología/instrumentación , Neuronas/fisiología , Telemetría/instrumentación , Animales , Conducta Animal/fisiología , Caenorhabditis elegans , Células Cultivadas , Drosophila , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo , Calefacción/métodos , Canales Iónicos/fisiología , Nanopartículas/química , Neuronas/efectos de la radiación
20.
PLoS One ; 5(3): e9487, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20209143

RESUMEN

We previously found that dopamine signaling modulates the sensitivity of wild-type C. elegans to the aversive odorant 1-octanol. C. elegans lacking the CAT-2 tyrosine hydroxylase enzyme, which is required for dopamine biosynthesis, are hypersensitive in their behavioral avoidance of dilute concentrations of octanol. Dopamine can also modulate the context-dependent response of C. elegans lacking RGS-3 function, a negative regulator of G alpha signaling. rgs-3 mutant animals are defective in their avoidance of 100% octanol when they are assayed in the absence of food (E. coli bacterial lawn), but their response is restored when they are assayed in the presence of food or exogenous dopamine. However, it is not known which receptor might be mediating dopamine's effects on octanol avoidance. Herein we describe a role for the C. elegans D2-like receptor DOP-3 in the regulation of olfactory sensitivity. We show that DOP-3 is required for the ability of food and exogenous dopamine to rescue the octanol avoidance defect of rgs-3 mutant animals. In addition, otherwise wild-type animals lacking DOP-3 function are hypersensitive to dilute octanol, reminiscent of cat-2 mutants. Furthermore, we demonstrate that DOP-3 function in the ASH sensory neurons is sufficient to rescue the hypersensitivity of dop-3 mutant animals, while dop-3 RNAi knockdown in ASH results in octanol hypersensitivity. Taken together, our data suggest that dopaminergic signaling through DOP-3 normally acts to dampen ASH signaling and behavioral sensitivity to octanol.


Asunto(s)
1-Octanol/farmacología , Conducta Animal , Proteínas de Caenorhabditis elegans/fisiología , Receptores de Dopamina D2/fisiología , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Cruzamientos Genéticos , Regulación de la Expresión Génica , Modelos Biológicos , Mutación , Neuronas/metabolismo , Interferencia de ARN , Receptores de Dopamina D2/química , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Olfato , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...