Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 123(9): 092001, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524471

RESUMEN

We study the nature of the new signal reported by LHCb in the J/ψp spectrum. Based on the S-matrix principles, we perform a minimum-bias analysis of the underlying reaction amplitude, focusing on the analytic properties that can be related to the microscopic origin of the P_{c}(4312)^{+} peak. By exploring several amplitude parametrizations, we find evidence for the attractive effect of the Σ_{c}^{+}D[over ¯]^{0} channel, which is not strong enough, however, to form a bound state.

2.
Phys Rev Lett ; 122(4): 042002, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768338

RESUMEN

Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, π_{1}(1400) and π_{1}(1600), which couple separately to ηπ and η^{'}π. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the η^{(')}π system by the COMPASS Collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S matrix. We provide a robust extraction of a single exotic π_{1} resonant pole, with mass and width 1564±24±86 and 492±54±102 MeV, which couples to both η^{(')}π channels. We find no evidence for a second exotic state. We also provide the resonance parameters of the a_{2}(1320) and a_{2}^{'}(1700).

3.
Phys Rev Lett ; 114(19): 192503, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26024167

RESUMEN

New results are reported from a measurement of π^{0} electroproduction near threshold using the p(e,e^{'}p)π^{0} reaction. The experiment was designed to determine precisely the energy dependence of s- and p-wave electromagnetic multipoles as a stringent test of the predictions of chiral perturbation theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the ϕ_{π}^{*} and θ_{π}^{*} angles in the pπ^{0} center of mass was obtained for invariant energies above threshold from 0.5 up to 15 MeV. The 4-momentum transfer Q^{2} coverage ranges from 0.05 to 0.155 (GeV/c)^{2} in fine steps. A simple phenomenological analysis of our data shows strong disagreement with p-wave predictions from ChPT for Q^{2}>0.07 (GeV/c)^{2}, while the s-wave predictions are in reasonable agreement.

4.
Phys Rev Lett ; 111(6): 062004, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23971564

RESUMEN

A precision measurement of the differential cross sections dσ/dΩ and the linearly polarized photon asymmetry Σ≡(dσ⊥-dσ∥)/(dσ⊥+dσ∥) for the γp→π0p reaction in the near-threshold region has been performed with a tagged photon beam and almost 4π detector at the Mainz Microtron. The Glasgow-Mainz photon tagging facility along with the Crystal Ball/TAPS multiphoton detector system and a cryogenic liquid hydrogen target were used. These data allowed for a precise determination of the energy dependence of the real parts of the S- and all three P-wave amplitudes for the first time and provide the most stringent test to date of the predictions of chiral perturbation theory and its energy region of agreement with experiment.

5.
Phys Rev Lett ; 105(26): 262302, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21231649

RESUMEN

The electric form factor of the neutron was determined from studies of the reaction 3He(e,e'n)pp in quasielastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear polarization was oriented perpendicular to the momentum transfer. The scattered electrons were detected in a magnetic spectrometer in coincidence with neutrons that were registered in a large-solid-angle detector. More than doubling the Q2 range over which it is known, we find G(E)(n)=0.0236±0.0017(stat)±0.0026(syst), 0.0208±0.0024±0.0019, and 0.0147±0.0020±0.0014 for Q(2)=1.72, 2.48, and 3.41 GeV2, respectively.

6.
Phys Rev Lett ; 98(6): 062001, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17358933

RESUMEN

We study the low-lying baryon spectrum (up to 2.2 GeV) provided by experiments and different quark models using statistical tools which allow us to postulate the existence of missing levels in spectra. We confirm that the experimental spectrum is compatible with random matrix theory, the paradigmatic model of quantum chaos, and we find that the quark models are more similar to a Poisson distribution, which is not compatible with what should be expected in a correlated spectrum. From our analysis it stems that the spectral fluctuation properties of quark-model spectra are incompatible with experimental data. This result can be used to enlighten the problem of missing resonances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...