Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Clin Epigenetics ; 16(1): 62, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715103

RESUMEN

BACKGROUND: Temple syndrome (TS14) is a rare imprinting disorder caused by maternal UPD14, imprinting defects or paternal microdeletions which lead to an increase in the maternal expressed genes and a silencing the paternally expressed genes in the 14q32 imprinted domain. Classical TS14 phenotypic features include pre- and postnatal short stature, small hands and feet, muscular hypotonia, motor delay, feeding difficulties, weight gain, premature puberty along and precocious puberty. METHODS: An exon array comparative genomic hybridization was performed on a patient affected by psychomotor and language delay, muscular hypotonia, relative macrocephaly, and small hand and feet at two years old. At 6 years of age, the proband presented with precocious thelarche. Genes dosage and methylation within the 14q32 region were analyzed by MS-MLPA. Bisulfite PCR and pyrosequencing were employed to quantification methylation at the four known imprinted differentially methylated regions (DMR) within the 14q32 domain: DLK1 DMR, IG-DMR, MEG3 DMR and MEG8 DMR. RESULTS: The patient had inherited a 69 Kb deletion, encompassing the entire DLK1 gene, on the paternal allele. Relative hypermethylation of the two maternally methylated intervals, DLK1 and MEG8 DMRs, was observed along with normal methylation level at IG-DMR and MEG3 DMR, resulting in a phenotype consistent with TS14. Additional family members with the deletion showed modest methylation changes at both the DLK1 and MEG8 DMRs consistent with parental transmission. CONCLUSION: We describe a girl with clinical presentation suggestive of Temple syndrome resulting from a small paternal 14q32 deletion that led to DLK1 whole-gene deletion, as well as hypermethylation of the maternally methylated DLK1-DMR.


Asunto(s)
Proteínas de Unión al Calcio , Cromosomas Humanos Par 14 , Metilación de ADN , Impresión Genómica , Péptidos y Proteínas de Señalización Intercelular , Humanos , Proteínas de Unión al Calcio/genética , Metilación de ADN/genética , Cromosomas Humanos Par 14/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Impresión Genómica/genética , Proteínas de la Membrana/genética , Niño , Masculino , Hibridación Genómica Comparativa/métodos , Femenino , Deleción Cromosómica , Preescolar , Fenotipo , Anomalías Múltiples/genética , Trastornos de Impronta , Hipotonía Muscular , Facies
2.
EBioMedicine ; 102: 105090, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547578

RESUMEN

BACKGROUND: Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS: We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS: We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION: Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING: Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).


Asunto(s)
Aminopiridinas , Neoplasias Óseas , Condrosarcoma , Sarcoma , Triazinas , Humanos , Animales , Ratones , Medicina de Precisión , Condrosarcoma/tratamiento farmacológico , Condrosarcoma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Neoplasias Óseas/genética
3.
Front Cell Dev Biol ; 11: 1293122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020886

RESUMEN

Pericentric heterochromatin (PCH) plays an essential role in the maintenance of genome integrity and alterations in PCH have been linked to cancer and aging. HP1 α, ß, and γ, are hallmarks of constitutive heterochromatin that are thought to promote PCH structure through binding to heterochromatin-specific histone modifications and interaction with a wide range of factors. Among the less understood components of PCH is the histone H2A variant H2A.Z, whose role in the organization and maintenance of PCH is poorly defined. Here we show that there is a complex interplay between H2A.Z and HP1 isoforms in PCH. While the loss of HP1α results in the accumulation of H2A.Z.1 in PCH, which is associated with a significant decrease in its mobile fraction, H2A.Z.1 binds preferentially to HP1ß in these regions. Of note, H2A.Z.1 downregulation results in increased heterochromatinization and instability of PCH, reflected by accumulation of the major epigenetic hallmarks of heterochromatin in these regions and increased frequency of chromosome aberrations related to centromeric/pericentromeric defects. Our studies support a role for H2A.Z in genome stability and unveil a key role of H2A.Z in the regulation of heterochromatin-specific epigenetic modifications through a complex interplay with the HP1 isoforms.

4.
Clin Epigenetics ; 15(1): 133, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37612734

RESUMEN

BACKGROUND: Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS: In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS: These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.


Asunto(s)
Neoplasias del Colon , Metilación de ADN , Humanos , Desmetilación del ADN , Epigénesis Genética , Carcinogénesis , Oxigenasas de Función Mixta , Proteínas Proto-Oncogénicas
5.
Mol Oncol ; 17(9): 1726-1743, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357610

RESUMEN

Glioblastoma (GBM) is one of the most aggressive types of cancer and exhibits profound genetic and epigenetic heterogeneity, making the development of an effective treatment a major challenge. The recent incorporation of molecular features into the diagnosis of patients with GBM has led to an improved categorization into various tumour subtypes with different prognoses and disease management. In this work, we have exploited the benefits of genome-wide multi-omic approaches to identify potential molecular vulnerabilities existing in patients with GBM. Integration of gene expression and DNA methylation data from both bulk GBM and patient-derived GBM stem cell lines has revealed the presence of major sources of GBM variability, pinpointing subtype-specific tumour vulnerabilities amenable to pharmacological interventions. In this sense, inhibition of the AP-1, SMAD3 and RUNX1/RUNX2 pathways, in combination or not with the chemotherapeutic agent temozolomide, led to the subtype-specific impairment of tumour growth, particularly in the context of the aggressive, mesenchymal-like subtype. These results emphasize the involvement of these molecular pathways in the development of GBM and have potential implications for the development of personalized therapeutic approaches.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Metilación de ADN/genética , Neoplasias Encefálicas/patología , Multiómica , Expresión Génica
6.
Sci Rep ; 13(1): 8293, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217546

RESUMEN

Obesity is associated with adipose tissue dysfunction through the differentiation and expansion of pre-adipocytes to adipocytes (hyperplasia) and/or increases in size of pre-existing adipocytes (hypertrophy). A cascade of transcriptional events coordinates the differentiation of pre-adipocytes into fully differentiated adipocytes; the process of adipogenesis. Although nicotinamide N-methyltransferase (NNMT) has been associated with obesity, how NNMT is regulated during adipogenesis, and the underlying regulatory mechanisms, remain undefined. In present study we used genetic and pharmacological approaches to elucidate the molecular signals driving NNMT activation and its role during adipogenesis. Firstly, we demonstrated that during the early phase of adipocyte differentiation NNMT is transactivated by CCAAT/Enhancer Binding Protein beta (CEBPB) in response to glucocorticoid (GC) induction. We found that Nnmt knockout, using CRISPR/Cas9 approach, impaired terminal adipogenesis by influencing the timing of cellular commitment and cell cycle exit during mitotic clonal expansion, as demonstrated by cell cycle analysis and RNA sequencing experiments. Biochemical and computational methods showed that a novel small molecule, called CC-410, stably binds to and highly specifically inhibits NNMT. CC-410 was, therefore, used to modulate protein activity during pre-adipocyte differentiation stages, demonstrating that, in line with the genetic approach, chemical inhibition of NNMT at the early stages of adipogenesis impairs terminal differentiation by deregulating the GC network. These congruent results conclusively demonstrate that NNMT is a key component of the GC-CEBP axis during the early stages of adipogenesis and could be a potential therapeutic target for both early-onset obesity and glucocorticoid-induced obesity.


Asunto(s)
Adipogénesis , Nicotinamida N-Metiltransferasa , Ratones , Animales , Adipogénesis/genética , Nicotinamida N-Metiltransferasa/metabolismo , Glucocorticoides/uso terapéutico , Diferenciación Celular , Transducción de Señal , Obesidad/genética , Obesidad/tratamiento farmacológico , Células 3T3-L1 , PPAR gamma/metabolismo
7.
Cardiovasc Diabetol ; 22(1): 44, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36870961

RESUMEN

BACKGROUND: Obesity is a negative chronic metabolic health condition that represents an additional risk for the development of multiple pathologies. Epidemiological studies have shown how maternal obesity or gestational diabetes mellitus during pregnancy constitute serious risk factors in relation to the appearance of cardiometabolic diseases in the offspring. Furthermore, epigenetic remodelling may help explain the molecular mechanisms that underlie these epidemiological findings. Thus, in this study we explored the DNA methylation landscape of children born to mothers with obesity and gestational diabetes during their first year of life. METHODS: We used Illumina Infinium MethylationEPIC BeadChip arrays to profile more than 770,000 genome-wide CpG sites in blood samples from a paediatric longitudinal cohort consisting of 26 children born to mothers who suffered from obesity or obesity with gestational diabetes mellitus during pregnancy and 13 healthy controls (measurements taken at 0, 6 and 12 month; total N = 90). We carried out cross-sectional and longitudinal analyses to derive DNA methylation alterations associated with developmental and pathology-related epigenomics. RESULTS: We identified abundant DNA methylation changes during child development from birth to 6 months and, to a lesser extent, up to 12 months of age. Using cross-sectional analyses, we discovered DNA methylation biomarkers maintained across the first year of life that could discriminate children born to mothers who suffered from obesity or obesity with gestational diabetes. Importantly, enrichment analyses suggested that these alterations constitute epigenetic signatures that affect genes and pathways involved in the metabolism of fatty acids, postnatal developmental processes and mitochondrial bioenergetics, such as CPT1B, SLC38A4, SLC35F3 and FN3K. Finally, we observed evidence of an interaction between developmental DNA methylation changes and maternal metabolic condition alterations. CONCLUSIONS: Our observations highlight the first six months of development as being the most crucial for epigenetic remodelling. Furthermore, our results support the existence of systemic intrauterine foetal programming linked to obesity and gestational diabetes that affects the childhood methylome beyond birth, which involves alterations related to metabolic pathways, and which may interact with ordinary postnatal development programmes.


Asunto(s)
Diabetes Gestacional , Obesidad Materna , Embarazo , Humanos , Femenino , Niño , Epigenoma , Estudios Transversales , Epigenómica , Obesidad , Epigénesis Genética
8.
Nat Commun ; 14(1): 1328, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899004

RESUMEN

The TINCR (Terminal differentiation-Induced Non-Coding RNA) gene is selectively expressed in epithelium tissues and is involved in the control of human epidermal differentiation and wound healing. Despite its initial report as a long non-coding RNA, the TINCR locus codes for a highly conserved ubiquitin-like microprotein associated with keratinocyte differentiation. Here we report the identification of TINCR as a tumor suppressor in squamous cell carcinoma (SCC). TINCR is upregulated by UV-induced DNA damage in a TP53-dependent manner in human keratinocytes. Decreased TINCR protein expression is prevalently found in skin and head and neck squamous cell tumors and TINCR expression suppresses the growth of SCC cells in vitro and in vivo. Consistently, Tincr knockout mice show accelerated tumor development following UVB skin carcinogenesis and increased penetrance of invasive SCCs. Finally, genetic analyses identify loss-of-function mutations and deletions encompassing the TINCR gene in SCC clinical samples supporting a tumor suppressor role in human cancer. Altogether, these results demonstrate a role for TINCR as protein coding tumor suppressor gene recurrently lost in squamous cell carcinomas.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , ARN Largo no Codificante , Animales , Ratones , Humanos , Ubiquitina/metabolismo , Carcinoma de Células Escamosas/genética , Genes Supresores de Tumor , Queratinocitos/metabolismo , Neoplasias de Cabeza y Cuello/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Micropéptidos
9.
Br J Haematol ; 201(4): 718-724, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36786170

RESUMEN

Despite the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway being frequently altered in T-ALL/LBL, no specific therapy has been approved for T-ALL/LBL patients with constitutive signalling by JAK/STAT, so there is an urgent need to identify pathway members that may be potential therapeutic targets. In the present study, we searched for JAK/STAT pathway members potentially modulated through aberrant methylation and identified SOCS3 hypermethylation as a recurrent event in T-ALL/LBL. Additionally, we explored the implications of SOCS3 deregulation in T-ALL/LBL and demonstrated that SOCS3 counteracts the constitutive activation of the JAK/STAT pathway through different molecular mechanisms. Therefore, SOCS3 emerges as a potential therapeutic target in T-ALL/LBL.


Asunto(s)
Leucemia-Linfoma de Células T del Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Quinasas Janus/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Factores de Transcripción STAT/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Linfocitos T/metabolismo
11.
Eur J Endocrinol ; 187(3): 335-347, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35895726

RESUMEN

Objective: The minimally invasive fine-needle aspiration cytology (FNAC) is the current gold standard for the diagnosis of thyroid nodule malignancy. However, the correct discrimination of follicular neoplasia often requires more invasive diagnostic techniques. The lack of suitable immunohistochemical markers to distinguish between follicular thyroid carcinoma and other types of follicular-derived lesions complicates diagnosis, and despite most of these tumours being surgically resected, only a small number will test positive for malignancy. As such, the development of new orthogonal diagnostic approaches may improve the accuracy of diagnosing thyroid nodules. Design: This study includes a retrospective, multi-centre training cohort including 54 fresh-frozen follicular-patterned thyroid samples and two independent, multi-centre validation cohorts of 103 snap-frozen biopsies and 33 FNAC samples, respectively. Methods: We performed a genome-wide genetic and epigenetic profiling of 54 fresh-frozen follicular-patterned thyroid samples using exome sequencing and the Illumina Human DNA Methylation EPIC platform. An extensive validation was performed using the bisulfite pyrosequencing technique. Results: Using a random forest approach, we developed a three-CpG marker-based diagnostic model that was subsequently validated using bisulfite pyrosequencing experiments. According to the validation cohort, this cost-effective method discriminates between benign and malignant nodules with a sensitivity and specificity of 97 and 88%, respectively (positive predictive value (PPV): 0.85, negative predictive value (NPV): 0.98). Conclusions: Our classification system based on a minimal set of epigenetic biomarkers can complement the potential of the diagnostic techniques currently available and would prioritize a considerable number of surgical interventions that are often performed due to uncertain cytology. Significance statement: In recent years, there has been a significant increase in the number of people diagnosed with thyroid nodules. The current challenge is their etiological diagnosis to discount malignancy without resorting to thyroidectomy. The method proposed here, based on DNA pyrosequencing assays, has high sensitivity (0.97) and specificity (0.88) for the identification of malignant thyroid nodules. This simple and cost-effective approach can complement expert pathologist evaluation to prioritize the classification of difficult-to-diagnose follicular-patterned thyroid lesions and track tumor evolution, including real-time monitoring of treatment efficacy, thereby stimulating adherence to health promotion programs.


Asunto(s)
Neoplasias de la Tiroides , Nódulo Tiroideo , Biomarcadores , Epigénesis Genética , Humanos , Estudios Retrospectivos , Sensibilidad y Especificidad , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Nódulo Tiroideo/diagnóstico , Nódulo Tiroideo/genética , Nódulo Tiroideo/patología
12.
J Natl Cancer Inst ; 114(3): 436-445, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-34581788

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells directed against CD19 (CART19) are effective in B-cell malignancies, but little is known about the molecular factors predicting clinical outcome of CART19 therapy. The increasingly recognized relevance of epigenetic changes in cancer immunology prompted us to determine the impact of the DNA methylation profiles of CART19 cells on the clinical course. METHODS: We recruited 114 patients with B-cell malignancies, comprising 77 patients with acute lymphoblastic leukemia and 37 patients with non-Hodgkin lymphoma who were treated with CART19 cells. Using a comprehensive DNA methylation microarray, we determined the epigenomic changes that occur in the patient T cells upon transduction of the CAR vector. The effects of the identified DNA methylation sites on clinical response, cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, event-free survival, and overall survival were assessed. All statistical tests were 2-sided. RESULTS: We identified 984 genomic sites with differential DNA methylation between CAR-untransduced and CAR-transduced T cells before infusion into the patient. Eighteen of these distinct epigenetic loci were associated with complete response (CR), adjusting by multiple testing. Using the sites linked to CR, an epigenetic signature, referred to hereafter as the EPICART signature, was established in the initial discovery cohort (n = 79), which was associated with CR (Fisher exact test, P < .001) and enhanced event-free survival (hazard ratio [HR] = 0.36; 95% confidence interval [CI] = 0.19 to 0.70; P = .002; log-rank P = .003) and overall survival (HR = 0.45; 95% CI = 0.20 to 0.99; P = .047; log-rank P = .04;). Most important, the EPICART profile maintained its clinical course predictive value in the validation cohort (n = 35), where it was associated with CR (Fisher exact test, P < .001) and enhanced overall survival (HR = 0.31; 95% CI = 0.11 to 0.84; P = .02; log-rank P = .02). CONCLUSIONS: We show that the DNA methylation landscape of patient CART19 cells influences the efficacy of the cellular immunotherapy treatment in patients with B-cell malignancy.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores Quiméricos de Antígenos , Antígenos CD19 , Tratamiento Basado en Trasplante de Células y Tejidos , Epigénesis Genética , Humanos , Inmunoterapia Adoptiva/efectos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfocitos T/genética
13.
Mol Metab ; 54: 101398, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801767

RESUMEN

OBJECTIVE: To analyze the genome-wide epigenomic and transcriptomic changes induced by long term resistance or endurance training in the hippocampus of wild-type mice. METHODS: We performed whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) of mice hippocampus after 4 weeks of specific training. In addition, we used a novel object recognition test before and after the intervention to determine whether the exercise led to an improvement in cognitive function. RESULTS: Although the majority of DNA methylation changes identified in this study were training-model specific, most were associated with hypomethylation and were enriched in similar histone marks, chromatin states, and transcription factor biding sites. It is worth highlighting the significant association found between the loss of DNA methylation in Tet1 binding sites and gene expression changes, indicating the importance of these epigenomic changes in transcriptional regulation. However, endurance and resistance training activate different gene pathways, those being associated with neuroplasticity in the case of endurance exercise, and interferon response pathways in the case of resistance exercise, which also appears to be associated with improved learning and memory functions. CONCLUSIONS: Our results help both understand the molecular mechanisms by which different exercise models exert beneficial effects for brain health and provide new potential therapeutic targets for future research.


Asunto(s)
Encéfalo/metabolismo , Epigenoma/genética , Prueba de Esfuerzo , Condicionamiento Físico Animal , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Front Cell Dev Biol ; 9: 671838, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447744

RESUMEN

Glioblastoma multiforme (GBM) is the most common and aggressive type of brain tumor in adulthood. Epigenetic mechanisms are known to play a key role in GBM although the involvement of histone methyltransferase KMT5B and its mark H4K20me2 has remained largely unexplored. The present study shows that DNA hypermethylation and loss of DNA hydroxymethylation is associated with KMT5B downregulation and genome-wide reduction of H4K20me2 levels in a set of human GBM samples and cell lines as compared with non-tumoral specimens. Ectopic overexpression of KMT5B induced tumor suppressor-like features in vitro and in a mouse tumor xenograft model, as well as changes in the expression of several glioblastoma-related genes. H4K20me2 enrichment was found immediately upstream of the promoter regions of a subset of deregulated genes, thus suggesting a possible role for KMT5B in GBM through the epigenetic modulation of key target cancer genes.

15.
J Clin Invest ; 131(13)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983906

RESUMEN

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. As predicted by its prenatal origin, infant B-ALL (iB-ALL) shows an exceptionally silent DNA mutational landscape, suggesting that alternative epigenetic mechanisms may substantially contribute to its leukemogenesis. Here, we have integrated genome-wide DNA methylome and transcriptome data from 69 patients with de novo MLL-rearranged leukemia (MLLr) and non-MLLr iB-ALL leukemia uniformly treated according to the Interfant-99/06 protocol. iB-ALL methylome signatures display a plethora of common and specific alterations associated with chromatin states related to enhancer and transcriptional control in normal hematopoietic cells. DNA methylation, gene expression, and gene coexpression network analyses segregated MLLr away from non-MLLr iB-ALL and identified a coordinated and enriched expression of the AP-1 complex members FOS and JUN and RUNX factors in MLLr iB-ALL, consistent with the significant enrichment of hypomethylated CpGs in these genes. Integrative methylome-transcriptome analysis identified consistent cancer cell vulnerabilities, revealed a robust iB-ALL-specific gene expression-correlating dmCpG signature, and confirmed an epigenetic control of AP-1 and RUNX members in reshaping the molecular network of MLLr iB-ALL. Finally, pharmacological inhibition or functional ablation of AP-1 dramatically impaired MLLr-leukemic growth in vitro and in vivo using MLLr-iB-ALL patient-derived xenografts, providing rationale for new therapeutic avenues in MLLr-iB-ALL.


Asunto(s)
Reordenamiento Génico de Linfocito B , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Islas de CpG , Metilación de ADN , Epigénesis Genética , Epigenoma , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Humanos , Lactante , Ratones , Ratones Endogámicos NOD , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Factor de Transcripción AP-1/antagonistas & inhibidores , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Metab ; 45: 101165, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33453420

RESUMEN

BACKGROUND: The abundance of energy metabolites is intimately interconnected with the activity of chromatin-modifying enzymes in order to guarantee the finely tuned modulation of gene expression in response to cellular energetic status. Metabolism-induced epigenetic gene regulation is a key molecular axis for the maintenance of cellular homeostasis, and its deregulation is associated with several pathological conditions. Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that catalyzes the methylation of nicotinamide (NAM) using the universal methyl donor S-adenosyl methionine (SAM), directly linking one-carbon metabolism with a cell's methylation balance and nicotinamide adenine dinucleotide (NAD+) levels. NNMT expression and activity are regulated in a tissue-specific-manner, and the protein can act either physiologically or pathologically depending on its distribution. While NNMT exerts a beneficial effect by regulating lipid parameters in the liver, its expression in adipose tissue correlates with obesity and insulin resistance. NNMT upregulation has been observed in a variety of cancers, and increased NNMT expression has been associated with tumor progression, metastasis and worse clinical outcomes. Accordingly, NNMT represents an appealing druggable target for metabolic disorders as well as oncological and other diseases in which the protein is improperly activated. SCOPE OF REVIEW: This review examines emerging findings concerning the complex NNMT regulatory network and the role of NNMT in both NAD metabolism and cell methylation balance. We extensively describe recent findings concerning the physiological and pathological regulation of NNMT with a specific focus on the function of NNMT in obesity, insulin resistance and other associated metabolic disorders along with its well-accepted role as a cancer-associated metabolic enzyme. Advances in strategies targeting NNMT pathways are also reported, together with current limitations of NNMT inhibitor drugs in clinical use. MAJOR CONCLUSIONS: NNMT is emerging as a key point of intersection between cellular metabolism and epigenetic gene regulation, and growing evidence supports its central role in several pathologies. The use of molecules that target NNMT represents a current pharmaceutical challenge for the treatment of several metabolic-related disease as well as in cancer.


Asunto(s)
Epigénesis Genética , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Tejido Adiposo/metabolismo , Animales , Humanos , Resistencia a la Insulina/genética , Hígado/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Nicotinamida N-Metiltransferasa/efectos de los fármacos , Obesidad , S-Adenosilmetionina/metabolismo
17.
Blood ; 137(7): 994-999, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32915956
18.
Genet Test Mol Biomarkers ; 25(1): 42-47, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33372860

RESUMEN

Introduction: Cell-free DNA (cfDNA) methylation is an important molecular biomarker, which provides information about the regulation of gene expression in the tissue of origin. There is an inverse correlation between SOST gene methylation and expression levels. Methods: We analyzed SOST promoter methylation in cfDNA from serum, and compared it with DNA from blood and bone cells from patients undergoing hip replacement surgery. We also measured cfDNA methylation in 28 osteoporotic patients at baseline and after 6 months of antiosteoporotic therapy (alendronate, teriparatide, or denosumab). Results: SOST gene promoter methylation levels in serum cfDNA were very similar to those of bone-derived DNA (79% ± 12% and 82% ± 7%, respectively), but lower than methylation levels in blood cell DNA (87% ± 10%). Furthermore, there was a positive correlation between an individual's SOST DNA methylation values in serum and bone. No differences in either serum sclerostin levels or SOST methylation were found after 6-months of therapy with antiosteoporotic drugs. Conclusions: Our results suggest that serum cfDNA does not originate from blood cells, but rather from bone. However, since we did not confirm changes in this marker after therapy with bone-active drugs, further studies examining the correlation between bone changes of SOST expression and SOST methylation in cfDNA are needed to confirm its potential role as a bone biomarker.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Artroplastia de Reemplazo de Cadera , Ácidos Nucleicos Libres de Células/metabolismo , Metilación de ADN , Osteoporosis/sangre , Regiones Promotoras Genéticas , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad
19.
Biomedicines ; 9(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374448

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease that leads to insulin deficiency and hyperglycemia. Little is known about how this metabolic dysfunction, which substantially alters the internal environment, forces cells to adapt through epigenetic mechanisms. Consequently, the purpose of this work was to study what changes occur in the epigenome of T1D patients after the onset of disease and in the context of poor metabolic control. We performed a genome-wide analysis of DNA methylation patterns in blood samples from 18 T1D patients with varying levels of metabolic control. We identified T1D-associated DNA methylation differences on more than 100 genes when compared with healthy controls. Interestingly, only T1D patients displaying poor glycemic control showed epigenetic age acceleration compared to healthy controls. The epigenetic alterations identified in this work make a valuable contribution to improving our understanding of T1D and to ensuring the appropriate management of the disease in relation to maintaining healthy aging.

20.
Nat Cell Biol ; 22(10): 1223-1238, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32989249

RESUMEN

Pluripotent stem cells (PSCs) transition between cell states in vitro, reflecting developmental changes in the early embryo. PSCs can be stabilized in the naive state by blocking extracellular differentiation stimuli, particularly FGF-MEK signalling. Here, we report that multiple features of the naive state in human and mouse PSCs can be recapitulated without affecting FGF-MEK signalling or global DNA methylation. Mechanistically, chemical inhibition of CDK8 and CDK19 (hereafter CDK8/19) kinases removes their ability to repress the Mediator complex at enhancers. CDK8/19 inhibition therefore increases Mediator-driven recruitment of RNA polymerase II (RNA Pol II) to promoters and enhancers. This efficiently stabilizes the naive transcriptional program and confers resistance to enhancer perturbation by BRD4 inhibition. Moreover, naive pluripotency during embryonic development coincides with a reduction in CDK8/19. We conclude that global hyperactivation of enhancers drives naive pluripotency, and this can be achieved in vitro by inhibiting CDK8/19 kinase activity. These principles may apply to other contexts of cellular plasticity.


Asunto(s)
Diferenciación Celular , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Metilación de ADN , Elementos de Facilitación Genéticos , Células Madre Pluripotentes/citología , Animales , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Humanos , Ratones , Fosforilación , Células Madre Pluripotentes/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...