Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mycorrhiza ; 33(5-6): 425-447, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792114

RESUMEN

Core Ericaceae produce delicate hair roots with inflated rhizodermal cells that host plethora of fungal symbionts. These poorly known mycobionts include various endophytes, parasites, saprobes, and the ericoid mycorrhizal (ErM) fungi (ErMF) that form the ErM symbiosis crucial for the fitness of their hosts. Using microscopy and high-throughput sequencing, we investigated their structural and molecular diversity in 14 different host × site combinations in Northern Bohemia (Central Europe) and Argentine Patagonia (South America). While we found typical ericoid mycorrhiza in all combinations, we did not detect ectomycorrhiza and arbuscular mycorrhiza. Superficial mantles of various thickness formed by non-clamped hyphae were observed in all combinations except Calluna vulgaris from N. Bohemia. Some samples contained frequent intercellular hyphae while others possessed previously unreported intracellular haustoria-like structures linked with intracellular hyphal coils. The 711 detected fungal OTU were dominated by Ascomycota (563) and Basidiomycota (119), followed by four other phyla. Ascomycetes comprised Helotiales (255), Pleosporales (53), Chaetothyriales (42), and other 19 orders, while basidiomycetes Sebacinales (42), Agaricales (28), Auriculariales (7), and other 14 orders. While many dominant OTU from both hemispheres lacked close relatives in reference databases, many were very similar to identical to unnamed sequences from around the world. On the other hand, several significant ericaceous mycobionts were absent in our dataset, incl. Cairneyella, Gamarada, Kurtia, Lachnum, and Leohumicola. Most of the detected OTU could not be reliably linked to a particular trophic mode, and only two could be reliably assigned to the archetypal ErMF Hyaloscypha hepaticicola. Probable ErMF comprised Hyaloscypha variabilis and Oidiodendron maius, both detected only in N. Bohemia. Possible ErMF comprised sebacinoid fungi and several unnamed members of Hyaloscypha s. str. While H. hepaticicola was dominant only in C. vulgaris, this model ErM host lacked O. maius and sebacinoid mycobionts. Hyaloscypha hepaticicola was absent in two and very rare in six combinations from Patagonia. Nine OTU represented dark septate endophytes from the Phialocephala fortinii s. lat.-Acephala applanata species complex, including the most abundant OTU (the only detected in all combinations). Statistical analyses revealed marked differences between N. Bohemia and Patagonia, but also within Patagonia, due to the unique community detected in a Valdivian temperate rainforest. Our results show that the ericaceous hair roots may host diverse mycobionts with mostly unknown functions and indicate that many novel ErMF lineages await discovery. Transhemispheric differences (thousands of km) in their communities may be evenly matched by local differences (scales of km, m, and less).


Asunto(s)
Basidiomycota , Ericaceae , Micorrizas , Micorrizas/genética , Ericaceae/microbiología , Raíces de Plantas/microbiología , Simbiosis , Endófitos/genética
2.
Microb Ecol ; 66(3): 581-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23636582

RESUMEN

Mycorrhizas are mutualistic associations between soil fungi and plant roots which usually improve water and nutrient uptake, influencing plant fitness. Nothofagus nervosa (Raulí) is an ecologically and economically important species of South American temperate forests. Since this native tree species yields valuable timber, it was overexploited and its natural distribution area was critically reduced, so it is currently included in domestication and conservation programs. Among the factors that should be considered in these programs are the ectomycorrhizas (EcM), which would be important for the successful establishment and survival of outplanted seedlings. The aim of this work was to analyze the abundance and diversity of EcM in N. nervosa nursery-cultivated seedlings assessed by morphotyping, fungal isolation, and DNA sequencing. Arbuscular mycorrhiza (AM) occurrence was also studied. A 2-year trial was conducted following the cultivation conditions used for domestication programs. Seedlings were cultivated under two different cultivation practices (greenhouse and nursery soil) without artificial inoculation of mycorrhizal fungi. Seedlings' roots were examined at different times. It was observed that they developed EcM between 6 and 12 months after germination and AMs were not detected in any plant. The most abundant ectomycorrhizal fungi present in seedlings' roots were Tomentella ellisii (Basidiomycota) and an unidentified fungus named Ascomicetous EcM sp. 1. Abundance and diversity of EcM varied between the two cultivation techniques analyzed in this study, since seedlings that continued growing in the greenhouse had higher colonization values, but those transplanted to the nursery soil were colonized by a higher diversity of fungal taxa.


Asunto(s)
Hongos/aislamiento & purificación , Magnoliopsida/microbiología , Micorrizas/aislamiento & purificación , Plantones/crecimiento & desarrollo , Árboles/microbiología , Agricultura Forestal , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Datos de Secuencia Molecular , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Filogenia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Plantones/microbiología , Árboles/crecimiento & desarrollo
3.
FEMS Microbiol Ecol ; 80(1): 179-92, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22224476

RESUMEN

Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs.


Asunto(s)
Hongos/clasificación , Magnoliopsida/microbiología , Levaduras/clasificación , Argentina , Secuencia de Bases , Frutas/microbiología , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/aislamiento & purificación , Datos de Secuencia Molecular , Semillas/microbiología , Levaduras/genética , Levaduras/crecimiento & desarrollo , Levaduras/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA