Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 19(17): 175701, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-21825680

RESUMEN

Surface plasmon resonance measurements and magnetic characterization studies have been carried out for two types of thiol-capped gold nanoparticles (NPs) with similar diameters between 2.0 and 2.5 nm and different organic molecules linked to the sulfur atom: dodecanethiol and tiopronin. In addition, Au NPs capped with tetraoctyl ammonium bromide have also been included in the investigation since such capping molecules weakly interact with the gold surface atoms and, therefore, this system can be used as a model for naked gold NPs; such particles presented a bimodal size distribution with diameters around 1.5 and 5 nm. The plasmon resonance is non-existent for tiopronin-capped NPs, whereas a trace of such a feature is observed for NPs covered with dodecanethiol molecules and a bulk-like feature is measured for NPs capped with tetralkyl ammonium salts. These differences would indicate that the modification of the surface electronic structure of the Au NPs depends on the geometry and self-assembling capabilities of the capping molecules and on the electric charge transferred between Au and S atoms. Regarding the magnetization, dodecanethiol-capped NPs have a ferromagnetic-like behaviour, while the NPs capped with tiopronin exhibit a paramagnetic behaviour and tetralkyl ammonium-protected NPs are diamagnetic across the studied temperature range; straight chains with a well-defined symmetry axis can induce orbital momentum on surface electrons close to the binding atoms. The orbital momentum not only contributes to the magnetization but also to the local anisotropy, giving rise to permanent magnetism. Due to the domain structure of the adsorbed molecules, orbital momentum is not induced for tiopronin-capped NPs and the charge transfer only induces a paramagnetic spin component.

2.
Nano Lett ; 7(6): 1489-94, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17521211

RESUMEN

We experimentally show that it is possible to induce room-temperature ferromagnetic-like behavior in ZnO nanoparticles without doping with magnetic impurities but simply inducing an alteration of their electronic configuration. Capping ZnO nanoparticles ( approximately 10 nm size) with different organic molecules produces an alteration of their electronic configuration that depends on the particular molecule, as evidenced by photoluminescence and X-ray absorption spectroscopies and altering their magnetic properties that varies from diamagnetic to ferromagnetic-like behavior.


Asunto(s)
Cristalización/métodos , Magnetismo , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Óxido de Zinc/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
3.
Phys Rev Lett ; 97(17): 177203, 2006 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-17155503

RESUMEN

In this Letter, we report on a crucial experiment showing that magnetic impurities reduce the ferromagnetic order temperature in thiol-capped Au glyconanoparticles (GNPs). The spontaneous magnetization of AuFe GNPs exhibits a fast decrease with temperature that contrasts with the almost constant value of the magnetization observed in Au NPs. Moreover, hysteresis disappears below 300 K. Both features indicate that Fe impurities reduce the high local anisotropy field responsible for the ferromagnetic behavior in Au GNPs. As a consequence, the amazing ferromagnetism in Au NPs should not be associated with the presence of magnetic impurities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...