Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376141

RESUMEN

Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.


Asunto(s)
Histonas , Schizosaccharomyces , Histonas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Saccharomyces cerevisiae/genética , ADN/metabolismo , Nucleosomas/metabolismo
2.
Mol Cell ; 83(7): 1061-1074.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868227

RESUMEN

Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.


Asunto(s)
ARN , Schizosaccharomyces , ARN/genética , ARN/metabolismo , ADN Primasa/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleasas/genética
3.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923616

RESUMEN

DNA double-strand breaks (DSBs) are accidental lesions generated by various endogenous or exogenous stresses. DSBs are also genetically programmed events during the V(D)J recombination process, meiosis, or other genome rearrangements, and they are intentionally generated to kill cancer during chemo- and radiotherapy. Most DSBs are processed in mammalian cells by the classical nonhomologous end-joining (c-NHEJ) pathway. Understanding the molecular basis of c-NHEJ has major outcomes in several fields, including radiobiology, cancer therapy, immune disease, and genome editing. The heterodimer Ku70/80 (Ku) is a central actor of the c-NHEJ as it rapidly recognizes broken DNA ends in the cell and protects them from nuclease activity. It subsequently recruits many c-NHEJ effectors, including nucleases, polymerases, and the DNA ligase 4 complex. Beyond its DNA repair function, Ku is also involved in several other DNA metabolism processes. Here, we review the structural and functional data on the DNA and RNA recognition properties of Ku implicated in DNA repair and in telomeres maintenance.


Asunto(s)
Autoantígeno Ku/metabolismo , Animales , Reparación del ADN , Evolución Molecular , Humanos , Autoantígeno Ku/química , Autoantígeno Ku/genética , Procesamiento Proteico-Postraduccional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...