Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(40): 14453-14464, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37772605

RESUMEN

In this work, CuOx (x = 1 and 2) nanostructures have been synthesized by electrochemical anodization in ethylene glycol based electrolytes using oxalic acid or NaF (with or without NaOH) as complexing agents. The influence of hydrodynamic conditions and time during anodization of copper have also been evaluated. A comprehensive morphological, structural, electrochemical and photoelectrochemical characterization of the nanostructures has been performed. The results revealed the convenient use of oxalic acid and 250 rpm for 5 minutes during electrochemical anodization to obtain homogeneous CuOx nanostructures formed by spheres with Cu2O as a predominant phase. Using this nanostructure as a photocathode for N2O photoelectron-reduction, almost 100% of N2O removal was achieved after 1 h, showing the improvement of the photoelectrochemical approach vs. the photo or the electro performance.

2.
Materials (Basel) ; 16(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36676414

RESUMEN

In this study, 1,5-diallyl-1H-pyrazolo [3,4-d] pyrimidin-4 (5H)-one (PPD) was evaluated as an anticorrosion agent for mild steel (MS) in 1 M HCl. The analysis was performed by weight loss (WL), potentiodynamic polarization measurement, and electrochemical impedance spectroscopy (EIS). The Tafel polarization showed that PPD is a mixed-type inhibitor and reaches 94% of the protective efficiency at 10-3 M. EIS results indicated that the resistance to charge transfer increases with increasing inhibitor concentration and the corrosion of MS is controlled by a charge transfer process. The inhibitor adsorption on the MS surface obeyed the Langmuir's adsorption isotherm. Thermodynamic parameters were calculated to elaborate the corrosion inhibition mechanism. The micrographic analysis revealed the existence of a barrier layer on the electrode surface with the presence of PPD. Theoretical examinations performed by electronic/atomic computer simulations confirmed that the obtained results were found to be consistent with experimental findings.

3.
Chemosphere ; 246: 125677, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31884230

RESUMEN

In this study, WO3 nanostructures were synthesized by the electrochemical anodization technique to use them on the degradation of persistent organic compounds such as the pesticide fenamiphos. The acids electrolyte used during the anodization were two different: 1.5 M H2SO4 - 0.05 M H2O2 and 1.5 M CH4O3S - 0.05 M H2O2. Once the samples have been manufactured, they have been subjected to different tests to analyze the properties of the nanostructures. With Field Emission Scanning Electron Microscopy (FE-SEM) the samples have been examined morphologically, their composition and crystallinity has been studied through Raman Spectroscopy and their photoelectrochemical behaviour by Photoelectrochemical Impedance Spectroscopy (PEIS). Finally, degradation tests have been carried out using the technique known as photoelectrocatalysis (PEC). The conditions that were applied in this technique were a potential of 1 VAg/AgCl and simulated solar illumination. The degradation process was monitored by UV-Visible and High-Performance liquid Chromatography (HPLC) to control the course of the experiment. The nanostructures obtained with 1.5 M CH4O3S - 0.05 M H2O2 electrolyte showed a better photoelectrochemical behaviour than nanostructures synthesized with 1.5 M H2SO4 - 0.05 M H2O2. The fenamiphos degradation was achieved at 2 h of experiment and the intermediate formation was noticed at 1 h of PEC experiment.


Asunto(s)
Nanotubos/química , Compuestos Organofosforados/química , Óxidos/química , Plaguicidas/química , Tungsteno/química , Electrólitos , Peróxido de Hidrógeno , Microscopía Electrónica de Rastreo , Modelos Químicos , Nanoestructuras/química , Procesos Fotoquímicos , Luz Solar
4.
Sci Total Environ ; 674: 88-95, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004907

RESUMEN

A photoelectrocatalyst consisting of WO3 nanosheets or nanorods has been synthesized by electrochemical anodization under hydrodynamic conditions, and has been used for the degradation of two toxic pesticides: chlorfenvinphos and bromacil. Nanostructures have been characterized by FESEM and Raman spectroscopy. Photoelectrochemical degradation tests have been carried out both for individual pesticide solutions and for a mixture solution, and the concentration evolution with time has been followed by UV-Vis spectrophotometry. For individual pesticides, pseudo-first order kinetic coefficients of 0.402h-1 and 0.324h-1 have been obtained for chlorfenvinphos and bromacil, respectively, while for the mixture solution, these kinetic coefficients have been 0.162h-1 and 0.408h-1. The change in behavior towards pesticide degradation depending on whether individual or mixture solutions were used might be indicative of a competitive process between the two pesticide molecules when interacting with the WO3 nanostructures surface or when approaching the semiconductor/electrolyte interface.

5.
J Environ Manage ; 226: 249-255, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30121460

RESUMEN

The degradation of pesticide diuron has been explored by photoelectrocatalysis (PEC) under visible light illumination using two different WO3 nanostructures, obtained by anodization of tungsten. The highest degradation efficiency (73%) was obtained for WO3 nanosheets synthesized in the presence of small amounts of hydrogen peroxide (0.05 M). For that nanostructure, the kinetic coefficient for diuron degradation was 133% higher than that for the other nanostructure (anodized in the presence of fluoride anions). These results have been explained by taking into account the different architecture and dimensions of the two WO3 nanostructures under study.


Asunto(s)
Diurona/química , Luz , Nanoestructuras , Diurona/aislamiento & purificación , Óxidos , Tungsteno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...