Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Neuroinflammation ; 16(1): 245, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31791382

RESUMEN

BACKGROUND: Neuraminidase (NA) is a sialidase present, among various locations, in the envelope/membrane of some bacteria/viruses (e.g., influenza virus), and is involved in infectiveness and/or dispersion. The administration of NA within the brain lateral ventricle represents a model of acute sterile inflammation. The relevance of the Toll-like receptors TLR2 and TLR4 (particularly those in microglial cells) in such process was investigated. METHODS: Mouse strains deficient in either TLR2 (TLR2-/-) or TLR4 (TLR4-/-) were used. NA was injected in the lateral ventricle, and the inflammatory reaction was studied by immunohistochemistry (IBA1 and IL-1ß) and qPCR (cytokine response). Also, microglia was isolated from those strains and in vitro stimulated with NA, or with TLR2/TLR4 agonists as positive controls (P3C and LPS respectively). The relevance of the sialidase activity of NA was investigated by stimulating microglia with heat-inactivated NA, or with native NA in the presence of sialidase inhibitors (oseltamivir phosphate and N-acetyl-2,3-dehydro-2-deoxyneuraminic acid). RESULTS: In septofimbria and hypothalamus, IBA1-positive and IL-1ß-positive cell counts increased after NA injection in wild type (WT) mice. In TLR4-/- mice, such increases were largely abolished, while were only slightly diminished in TLR2-/- mice. Similarly, the NA-induced expression of IL-1ß, TNFα, and IL-6 was completely blocked in TLR4-/- mice, and only partially reduced in TLR2-/- mice. In isolated cultured microglia, NA induced a cytokine response (IL-1ß, TNFα, and IL-6) in WT microglia, but was unable to do so in TLR4-/- microglia; TLR2 deficiency partially affected the NA-induced microglial response. When WT microglia was exposed in vitro to heat-inactivated NA or to native NA along with sialidase inhibitors, the NA-induced microglia activation was almost completely abrogated. CONCLUSIONS: NA is able to directly activate microglial cells, and it does so mostly acting through the TLR4 receptor, while TLR2 has a secondary role. Accordingly, the inflammatory reaction induced by NA in vivo is partially dependent on TLR2, while TLR4 plays a crucial role. Also, the sialidase activity of NA is critical for microglial activation. These results highlight the relevance of microbial NA in the neuroinflammation provoked by NA-bearing pathogens and the possibility of targeting its sialidase activity to ameliorate its impact.


Asunto(s)
Microglía/metabolismo , Neuraminidasa/administración & dosificación , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inyecciones Intraventriculares , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores
2.
Front Cell Neurosci ; 13: 472, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708746

RESUMEN

Microglia are the resident macrophages in the brain. Traditionally, two forms of microglia have been described: one considered as a resting/surveillant state in which cells have a highly branched morphology, and another considered as an activated state in which they acquire a de-ramified or amoeboid form. However, many studies describe intermediate microglial morphologies which emerge during pathological processes. Since microglial form and function are closely related, it is of interest to correlate microglial morphology with the extent of its activation. To address this issue, we used a rat model of neuroinflammation consisting in a single injection of the enzyme neuraminidase (NA) within the lateral ventricle. Sections from NA-injected animals were co-immunolabeled with the microglial marker IBA1 and the cytokine IL-1ß, which highlight features of the cell's shape and inflammatory activation, respectively. Activated (IL-1ß positive) microglial cells were sampled from the dorsal hypothalamus nearby the third ventricle. Images of single microglial cells were processed in two different ways to obtain (1) an accurate measure of the level of expression of IL-1ß (indicating the degree of activation), and (2) a set of 15 morphological parameters to quantitatively and objectively describe the cell's shape. A simple regression analysis revealed a dependence of most of the morphometric parameters on IL-1ß expression, demonstrating that the morphology of microglial cells changes progressively with the degree of activation. Moreover, a hierarchical cluster analysis pointed out four different morphotypes of activated microglia, which are characterized not only by morphological parameters values, but also by specific IL-1ß expression levels. Thus, these results demonstrate in an objective manner that the activation of microglial cells is a gradual process, and correlates with their morphological change. Even so, it is still possible to categorize activated cells according to their morphometric parameters, each category presenting a different activation degree. The physiological relevance of those activated morphotypes is an issue worth to be assessed in the future.

3.
Front Cell Neurosci ; 11: 235, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848398

RESUMEN

It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1ß positive, i.e., M1-state) compared to those from control animals (none of them IL-1ß positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.

4.
Front Neurol ; 8: 78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28326060

RESUMEN

AIMS: Some central nervous system pathogens express neuraminidase (NA) on their surfaces. In the rat brain, a single intracerebroventricular (ICV) injection of NA induces myelin vacuolation in axonal tracts. Here, we explore the nature, the time course, and the role of the complement system in this damage. METHODS: The spatiotemporal analysis of myelin vacuolation was performed by optical and electron microscopy. Myelin basic protein-positive area and oligodendrocyte transcription factor (Olig2)-positive cells were quantified in the damaged bundles. Neuronal death in the affected axonal tracts was assessed by Fluoro-Jade B and anti-caspase-3 staining. To evaluate the role of the complement, membrane attack complex (MAC) deposition on damaged bundles was analyzed using anti-C5b9. Rats ICV injected with the anaphylatoxin C5a were studied for myelin damage. In addition, NA-induced vacuolation was studied in rats with different degrees of complement inhibition: normal rats treated with anti-C5-blocking antibody and C6-deficient rats. RESULTS: The stria medullaris, the optic chiasm, and the fimbria were the most consistently damaged axonal tracts. Vacuolation peaked 7 days after NA injection and reverted by day 15. Olig2+ cell number in the damaged tracts was unaltered, and neurodegeneration associated with myelin alterations was not detected. MAC was absent on damaged axonal tracts, as revealed by C5b9 immunostaining. Rats ICV injected with the anaphylatoxin C5a displayed no myelin injury. When the complement system was experimentally or constitutively inhibited, NA-induced myelin vacuolation was similar to that observed in normal rats. CONCLUSION: Microbial NA induces a moderate and transient myelin vacuolation that is not caused either by neuroinflammation or complement system activation.

5.
J Neuroinflammation ; 13(1): 115, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27209022

RESUMEN

BACKGROUND: In the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement. METHODS: The assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats. RESULTS: The complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6. CONCLUSIONS: These results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement.


Asunto(s)
Ventriculitis Cerebral/inducido químicamente , Ventriculitis Cerebral/patología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Epéndimo/lesiones , Neuraminidasa/toxicidad , Animales , Anticuerpos/farmacología , Células Cultivadas , Complemento C3/metabolismo , Complemento C5/inmunología , Complemento C5/metabolismo , Complemento C6/efectos de los fármacos , Complemento C6/genética , Modelos Animales de Enfermedad , Epéndimo/citología , Epéndimo/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Inyecciones Intraventriculares , Lectinas/metabolismo , Masculino , Ratas , Ratas Transgénicas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vimentina/metabolismo
6.
PLoS One ; 10(12): e0145244, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26671069

RESUMEN

Cannabinoid CB1 receptors peripherally modulate energy metabolism. Here, we investigated the role of CB1 receptors in the expression of glucose/pyruvate/tricarboxylic acid (TCA) metabolism in rat abdominal muscle. Dihydrolipoamide dehydrogenase (DLD), a flavoprotein component (E3) of α-ketoacid dehydrogenase complexes with diaphorase activity in mitochondria, was specifically analyzed. After assessing the effectiveness of the CB1 receptor antagonist AM251 (3 mg kg(-1), 14 days) on food intake and body weight, we could identified seven key enzymes from either glycolytic pathway or TCA cycle--regulated by both diet and CB1 receptor activity--through comprehensive proteomic approaches involving two-dimensional electrophoresis and MALDI-TOF/LC-ESI trap mass spectrometry. These enzymes were glucose 6-phosphate isomerase (GPI), triosephosphate isomerase (TPI), enolase (Eno3), lactate dehydrogenase (LDHa), glyoxalase-1 (Glo1) and the mitochondrial DLD, whose expressions were modified by AM251 in hypercaloric diet-induced obesity. Specifically, AM251 blocked high-carbohydrate diet (HCD)-induced expression of GPI, TPI, Eno3 and LDHa, suggesting a down-regulation of glucose/pyruvate/lactate pathways under glucose availability. AM251 reversed the HCD-inhibited expression of Glo1 and DLD in the muscle, and the DLD and CB1 receptor expression in the mitochondrial fraction. Interestingly, we identified the presence of CB1 receptors at the membrane of striate muscle mitochondria. DLD over-expression was confirmed in muscle of CB1-/- mice. AM251 increased the pyruvate dehydrogenase and glutathione reductase activity in C2C12 myotubes, and the diaphorase/oxidative activity in the mitochondria fraction. These results indicated an up-regulation of methylglyoxal and TCA cycle activity. Findings suggest that CB1 receptors in muscle modulate glucose/pyruvate/lactate pathways and mitochondrial oxidative activity by targeting DLD.


Asunto(s)
Dihidrolipoamida Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Músculos/enzimología , Obesidad/metabolismo , Receptor Cannabinoide CB1/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Línea Celular , Dieta , Carbohidratos de la Dieta , Dihidrolipoamida Deshidrogenasa/genética , Electroforesis en Gel Bidimensional , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Glutatión Reductasa/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculos/efectos de los fármacos , Obesidad/enzimología , Obesidad/genética , Oxidación-Reducción/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Ácido Pirúvico/metabolismo , Ratas Wistar , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Front Med (Lausanne) ; 2: 14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25853134

RESUMEN

In the present paper, we describe the facts that took place in the rat brain after a single injection of the enzyme neuraminidase from Clostridium perfringens into the right lateral ventricle. After injection, it diffused through the cerebrospinal fluid of the ipsilateral ventricle and the third ventricle, and about 400 µm into the periventricular brain parenchyma. The expression of ICAM1 in the endothelial cells of the periventricular vessels, IBA1 in microglia, and GFAP in astrocytes notably increased in the regions reached by the injected neuraminidase. The subependymal microglia and the ventricular macrophages begun to express IL1ß and some appeared to cross the ependymal layer. After about 4 h of the injection, leukocytes migrated from large venules of the affected choroid plexus, the meninges and the local subependyma, and infiltrated the brain. The invading cells arrived orderly: first neutrophils, then macrophage-monocytes, and last CD8α-positive T-lymphocytes and B-lymphocytes. Leukocytes in the ventricles and the perivascular zones penetrated the brain parenchyma passing through the ependyma and the glia limitans. Thus, it is likely that a great part of the damage produced by microorganism invading the brain may be due to their neuraminidase content.

8.
Tissue Barriers ; 2: e28426, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25045600

RESUMEN

The neuroepithelium is a germinal epithelium containing progenitor cells that produce almost all of the central nervous system cells, including the ependyma. The neuroepithelium and ependyma constitute barriers containing polarized cells covering the embryonic or mature brain ventricles, respectively; therefore, they separate the cerebrospinal fluid that fills cavities from the developing or mature brain parenchyma. As barriers, the neuroepithelium and ependyma play key roles in the central nervous system development processes and physiology. These roles depend on mechanisms related to cell polarity, sensory primary cilia, motile cilia, tight junctions, adherens junctions and gap junctions, machinery for endocytosis and molecule secretion, and water channels. Here, the role of both barriers related to the development of diseases, such as neural tube defects, ciliary dyskinesia, and hydrocephalus, is reviewed.

9.
PLoS One ; 8(5): e64750, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23741384

RESUMEN

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17ß-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.


Asunto(s)
Giro Dentado/efectos de los fármacos , Gliosis/prevención & control , Isoflavonas/farmacología , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Obesidad/prevención & control , Animales , Apoptosis/efectos de los fármacos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Proliferación Celular , Giro Dentado/metabolismo , Giro Dentado/patología , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Expresión Génica/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Gliosis/etiología , Gliosis/genética , Gliosis/metabolismo , Isoflavonas/aislamiento & purificación , Masculino , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Obesidad/etiología , Obesidad/genética , Obesidad/metabolismo , Extractos Vegetales/química , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Wistar , Glycine max/química
10.
Int Rev Cell Mol Biol ; 296: 63-137, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22559938

RESUMEN

Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.


Asunto(s)
Diencéfalo/embriología , Órgano Subcomisural/embriología , Animales , Diencéfalo/citología , Diencéfalo/metabolismo , Humanos , Órgano Subcomisural/citología , Órgano Subcomisural/metabolismo
11.
Eur J Neurosci ; 33(9): 1577-86, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21395869

RESUMEN

Endocannabinoid signalling participates in the control of neurogenesis, especially after brain insults. Obesity may explain alterations in physiology affecting neurogenesis, although it is unclear whether cannabinoid signalling may modulate neural proliferation in obese animals. Here we analyse the impact of obesity by using two approaches, a high-fat diet (HFD, 60% fat) and a standard/low-fat diet (STD, 10% fat), and the response to a subchronic treatment with the cannabinoid receptor type 1 (CB1) inverse agonist AM251 (3 mg/kg) on cell proliferation of two relevant neurogenic regions, namely the subventricular zone in the striatal wall of the lateral ventricle (SVZ) and the subgranular zone of the dentate gyrus (SGZ), and also in the hypothalamus given its role in energy metabolism. We found evidence of an interaction between diet-induced obesity and CB1 signalling in the regulation of cell proliferation. AM251 reduced caloric intake and body weight in obese rats, as well as corrected plasma levels of cholesterol and triglycerides. AM251 is shown, for the first time, to modulate cell proliferation in HFD-obese rats only. We observed an increase in the number of 5-bromo-2-deoxyuridine-labelled (BrdU+) cells in the SGZ, but a decrease in the number of BrdU+ cells in the SVZ and the hypothalamus of AM251-treated HFD rats. These BrdU+ cells expressed the neuron-specific ßIII-tubulin. These results suggest that obesity may impact cell proliferation in the brain selectively, and provide support for a role of CB1 signalling regulation of neurogenesis in response to obesity.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Proliferación Celular , Neurogénesis/fisiología , Obesidad/fisiopatología , Adiponectina/sangre , Animales , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Grasas de la Dieta/administración & dosificación , Ingestión de Energía/efectos de los fármacos , Femenino , Insulina/sangre , Leptina/sangre , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/metabolismo , Triglicéridos/sangre
12.
Brain Res ; 1382: 275-81, 2011 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-21262207

RESUMEN

Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of familial Alzheimer's disease. PS1 is widely expressed in embryogenesis and is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. To further investigate the role of PS1 in the brain, we inactivated the PS1 gene in Wnt1 cell lineages using the Cre-loxP recombination system. Here we show that conditional inactivation of PS1 in Wnt1 cell lineages results in congenital hydrocephalus and subcommissural organ abnormalities, suggesting a possible role of PS1 in the regulation of cerebrospinal fluid homeostasis.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Hidrocefalia/genética , Malformaciones del Sistema Nervioso/genética , Presenilina-1/genética , Órgano Subcomisural/anomalías , Proteína Wnt1/genética , Animales , Linaje de la Célula/genética , Ventrículos Cerebrales/anomalías , Ventrículos Cerebrales/patología , Líquido Cefalorraquídeo/fisiología , Presión del Líquido Cefalorraquídeo/fisiología , Modelos Animales de Enfermedad , Homeostasis/genética , Hidrocefalia/patología , Hidrocefalia/fisiopatología , Ratones , Ratones Noqueados , Ratones Transgénicos , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/patología , Presenilina-1/antagonistas & inhibidores , Presenilina-1/deficiencia , Órgano Subcomisural/fisiopatología
13.
Biochem J ; 433(1): 175-85, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20955176

RESUMEN

The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) ß and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of CB1 receptors could work towards restoration of the metabolic adaption imposed by diet.


Asunto(s)
Cannabinoides/metabolismo , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , Músculo Esquelético/metabolismo , Receptor Cannabinoide CB1/antagonistas & inhibidores , Animales , Cannabinoides/biosíntesis , Grasas de la Dieta/administración & dosificación , Ingestión de Energía , PPAR gamma/genética , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Receptor Cannabinoide CB2/genética , Receptores de Adiponectina/genética , Aumento de Peso
14.
Cell Tissue Res ; 339(2): 383-95, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20012322

RESUMEN

The subcommissural organ (SCO) is an ependymal differentiation located in the diencephalon under the posterior commissure (PC). SCO-spondin, a glycoprotein released by the SCO, belongs to the thrombospondin superfamily and shares molecular domains with axonal pathfinding molecules. Several lines of evidence suggest a relationship between the SCO and the development of the PC in the chick: (1) their close location to each other, (2) their differentiation at the same developmental stage in the chick, (3) the abnormal PC found in null mutants lacking an SCO and (4) the release by the SCO of SCO-spondin. By application of DiI crystals in the PC of chick embryos, we have identified the neurons that give rise to the PC. Labelling is confined to the magnocellular nucleus of the PC (MNPC). To gain insight into the role of the SCO in PC development, coculture experiments of explants of the MNPC region (MNPCr) from embryos at embryonic day 4 (E4) with SCO explants from E4 or E13 embryos have been performed and the neurite outgrowth from the MNPCr explants has been analysed. In the case of coculture of E4 MNPCr with E4 SCO, the number of neurites growing from the MNPCr is higher at the side facing the SCO. However, when E4 MNPCr and E13 SCO are cocultured, the neurites grow mostly at the side opposite to the SCO. These data suggest that, at early stages of development, the SCO releases some attractive or permissive molecule(s) for the growing of the PC, whereas at later stages, the SCO has a repulsive effect over neurites arising from MNPCr.


Asunto(s)
Comunicación Celular , Epitálamo/embriología , Neuronas/citología , Órgano Subcomisural/embriología , Animales , Diferenciación Celular , Embrión de Pollo , Técnicas de Cocultivo , Epitálamo/citología , Inmunohistoquímica , Neuritas/fisiología , Órgano Subcomisural/citología , Técnicas de Cultivo de Tejidos
15.
Endocrinol. nutr. (Ed. impr.) ; 55(8): 346-355, oct. 2008. ilus, tab
Artículo en Es | IBECS | ID: ibc-69989

RESUMEN

Objetivo: Vitamix® es un producto dietético compuesto por un extractohidroalcohólico de cereales y leguminosas con miel, glicerofosfato de calcio, vitaminas B y D selenio y flúor. El producto base, Ceregumil®, patentado en 1912, ha sido muy popular como reconstituyente, y los usuarios refieren una sensación de salud, resistencia a enfermedades o mayor predisposición para el trabajo o el ejercicio. Material y método: En el presente trabajo se analiza el efecto de Vitamix®, utilizado como suplemento alimenticio en ratas de laboratorio, en diversos parámetros fisiológicos y pruebas físicas. Periódicamente se realizaron hemogramas y se midieron la ingesta y el peso de los animales, así como las concentraciones sanguíneas de glucosa, triglicéridos, colesterol, transaminasas y malondialdehído, un producto de la lipoperoxidación. Se realizaron pruebas de resistencia física y sellevó a cabo un estudio histoquímico del hígado. Resultados: Los animales que tomaron Vitamix® tenían menor peso e ingesta en edades avanzadas, mostraban mayor capacidad antioxidante, mayor resistencia en la prueba del alambre y menor fatiga en la piscina de Morris. En este último caso, la mejoría era notable en los animales considerados de mal desempeño suplementados con Vitamix®. El resto de los parámetros medidos se mantuvieron estadísticamente similares a los de los controles y no se observaron alteraciones hepáticas de ningún tipo. Conclusiones: Este estudio supone una base científica y experimental para conocer el efecto de dichos complementos en los parámetrosfisiológicos (AU)


Objective: Vitamix® is a dietary product composed of a hydro-alcoholic extract of cereals and pulses with honey, calciumgly cerophosphate, vitamins B and D, selenium and fluoride. The basic product, Ceregumil®, patented in 1912, was highly popular as tonic and consumers reported a feeling of health, resistance to illness, and increased predisposition to work and exercise. Material and method: In the present study we analysed the effect of Vitamix® used as dietary supplement, on several physiological parameters in laboratoryrats. We periodically performed hemograms and measured intake and weight, as well as blood levels of glucose, triglycerides, cholesterol, transaminases and malondialdehyde, a lipoperoxidation product. Physical probes were performed and a histochemical study was done in the liver. Results: Rats fed with Vitamix® displayed lower intake and body weight in adult ages, showed and increased antioxidantactivity, higher resistance in the wire hang test and lower fatigue in the Morris pool, specially those specimens considered as bad performers supplemented with Vitamix®. The rest of the measured parameters remained similar to control and no hepatic alterations were found.Conclusions: This study supports as cientific basis to know the effect of these complements over physiologicalparameters (AU)


Asunto(s)
Animales , Ratas , Antioxidantes/análisis , Vitaminas en la Dieta/metabolismo , Resistencia Física/fisiología , Suplementos Dietéticos/análisis , Radicales Libres/análisis , Malondialdehído/análisis , Estudios de Casos y Controles , Transaminasas/análisis
16.
Mol Cell Neurosci ; 39(3): 342-55, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18708146

RESUMEN

Neurogenesis persists in certain regions of the adult brain including the subgranular zone of the hippocampal dentate gyrus wherein its regulation is essential, particularly in relation to learning, stress and modulation of mood. Lysophosphatidic acid (LPA) is an extracellular signaling phospholipid with important neural regulatory properties mediated by specific G protein-coupled receptors, LPA(1-5). LPA(1) is highly expressed in the developing neurogenic ventricular zone wherein it is required for normal embryonic neurogenesis, and, by extension may play a role in adult neurogenesis as well. By means of the analyses of a variant of the original LPA(1)-null mutant mouse, termed the Malaga variant or "maLPA(1)-null," which has recently been reported to have defective neurogenesis within the embryonic cerebral cortex, we report here a role for LPA(1) in adult hippocampal neurogenesis. Proliferation, differentiation and survival of newly formed neurons are defective in the absence of LPA(1) under normal conditions and following exposure to enriched environment and voluntary exercise. Furthermore, analysis of trophic factors in maLPA(1)-null mice demonstrated alterations in brain-derived neurotrophic factor and insulin growth factor 1 levels after enrichment and exercise. Morphological analyses of doublecortin positive cells revealed the anomalous prevalence of bipolar cells in the subgranular zone, supporting the operation of LPA(1) signaling pathways in normal proliferation, maturation and differentiation of neuronal precursors.


Asunto(s)
Giro Dentado/fisiología , Eliminación de Gen , Neurogénesis/fisiología , Receptores del Ácido Lisofosfatídico , Animales , Apoptosis/fisiología , Conducta Animal/fisiología , Biomarcadores/metabolismo , Giro Dentado/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Distribución Aleatoria , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/metabolismo
17.
J Comp Neurol ; 507(4): 1571-87, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18236450

RESUMEN

The subventricular zone of the striatal wall of adult rodents is an active neurogenic region for life. Cubic multiciliated ependyma separates the subventricular zone from the cerebrospinal fluid (CSF) and is involved in the control of adult neurogenesis. By injecting neuraminidase from Clostridium perfringens into the right lateral ventricle of the rat, we provoked a partial detachment of the ependyma in the striatal wall. The contralateral ventricle was never affected and was used as the experimental control. Neuraminidase caused widening of the intercellular spaces among some ependymal cells and their subsequent detachment and disintegration in the CSF. Partial ependymal denudation was followed by infiltration of the CSF with macrophages and neutrophils from the local choroid plexus, which ependymal cells never detached after neuraminidase administration. Inflammation extended toward the periventricular parenchyma. The ependymal cells that did not detach and remained in the ventricle wall never proliferated. The lost ependyma was never recovered, and ependymal cells never behaved as neural stem cells. Instead, a scar formed by overlapping astrocytic processes sealed those regions devoid of ependyma. Some ependymal cells at the border of the denudated areas lost contact with the ventricle and became located under the glial layer. Concomitantly with scar formation, some subependymal cells protruded toward the ventricle through the ependymal breaks, proliferated, and formed clusters of rounded ventricular cells that expressed the phenotype of neuroblasts. Ventricular clusters of neuroblasts remained in the ventricle up to 90 days after injection. In the subventricular zone, adult neurogenesis persisted.


Asunto(s)
Cuerpo Estriado/citología , Epéndimo/citología , Neuraminidasa/administración & dosificación , Neuronas/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Epéndimo/efectos de los fármacos , Epéndimo/inmunología , Inmunohistoquímica , Inflamación/inmunología , Inyecciones Intraventriculares , Masculino , Microscopía Confocal , Microscopía Electrónica , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Ratas , Ratas Wistar , Células Madre/efectos de los fármacos , Células Madre/ultraestructura
18.
Endocrinol Nutr ; 55(8): 346-55, 2008 Oct.
Artículo en Inglés, Español | MEDLINE | ID: mdl-22975599

RESUMEN

OBJECTIVE: Vitamix® is a dietary product composed of a hydro-alcoholic extract of cereals and pulses with honey, calcium glycerophosphate, vitamins B and D, selenium and fluoride. The basic product, Ceregumil®, patented in 1912, was highly popular as tonic and consumers reported a feeling of health, resistance to illness, and increased predisposition to work and exercise. MATERIAL AND METHOD: In the present study we analysed the effect of Vitamix® used as dietary supplement, on several physiological parameters in laboratory rats. We periodically performed hemograms and measured intake and weight, as well as blood levels of glucose, triglycerides, cholesterol, transaminases and malondialdehyde, a lipoperoxidation product. Physical probes were performed and a histochemical study was done in the liver. RESULTS: Rats fed with Vitamix® displayed lower intake and body weight in adult ages, showed and increased antioxidant activity, higher resistance in the wire hang test and lower fatigue in the Morris pool, specially those specimens considered as bad performers supplemented with Vitamix®. The rest of the measured parameters remained similar to control and no hepatic alterations were found. CONCLUSIONS: This study supports a scientific basis to know the effect of these complements over physiological parameters.

19.
Cereb Cortex ; 18(4): 938-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17656621

RESUMEN

Lysophosphatidic acid (LPA) is a simple phospholipid with extracellular signaling properties mediated by specific G protein-coupled receptors. At least 2 LPA receptors, LPA(1) and LPA(2), are expressed in the developing brain, the former enriched in the neurogenic ventricular zone (VZ), suggesting a normal role in neurogenesis. Despite numerous studies reporting the effects of exogenous LPA using in vitro neural models, the first LPA(1) loss-of-function mutants reported did not show gross cerebral cortical defects in the 50% that survived perinatal demise. Here, we report a role for LPA(1) in cortical neural precursors resulting from analysis of a variant of a previously characterized LPA(1)-null mutant that arose spontaneously during colony expansion. These LPA(1)-null mice, termed maLPA(1), exhibit almost complete perinatal viability and show a reduced VZ, altered neuronal markers, and increased cortical cell death that results in a loss of cortical layer cellularity in adults. These data support LPA(1) function in normal cortical development and suggest that the presence of genetic modifiers of LPA(1) influences cerebral cortical development.


Asunto(s)
Corteza Cerebral/anomalías , Regulación del Desarrollo de la Expresión Génica , Lisofosfolípidos/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Transducción de Señal/fisiología , Animales , Animales Recién Nacidos , Apoptosis , División Celular , Movimiento Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Embarazo , Receptores del Ácido Lisofosfatídico/metabolismo , Células Madre/citología
20.
Dev Dyn ; 230(3): 446-60, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15188430

RESUMEN

We have analyzed the expression of the Msx1 gene in the developing mouse brain and examined the brain phenotype in homozygotes. Msx1 is expressed in every cerebral vesicle throughout development, particularly in neuroepithelia, such as those of the fimbria and the medulla. Timing analysis suggests that Msx1(nLacZ) cells delaminate and migrate radially from these epithelia, mainly at embryonic days 14-16, while immunohistochemistry studies reveal that some of the beta-galactosidase migrating cells are oligodendrocytes or astrocytes. Our results suggest that the Msx1 neuroepithelia of fimbria and medulla may be a source of glial precursors. The Msx1 mutants display severe hydrocephalus at birth, while the subcommissural organ, the habenula, and the posterior commissure fail to develop correctly. No label was detected in the mutant subcommissural organ using a specific antibody against Reissner's fiber. Besides, the fasciculus retroflexus deviates close to the subcommissural organ, while the paraventricular thalamic nucleus shows histological disorganization. Our results implicate the Msx1 gene in the differentiation of the subcommissural organ cells and posterior commissure and that Msx1 protein may play a role in the pathfinding and bundling of the fasciculus retroflexus and in the structural arrangement of the paraventricular thalamic nucleus.


Asunto(s)
Diencéfalo/anomalías , Diencéfalo/embriología , Proteínas de Homeodominio/metabolismo , Hidrocefalia/etiología , Hidrocefalia/metabolismo , Animales , Astrocitos/metabolismo , Diencéfalo/citología , Proteínas de Homeodominio/genética , Homocigoto , Hidrocefalia/genética , Factor de Transcripción MSX1 , Ratones , Ratones Mutantes , Mutación , Oligodendroglía/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...