Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1266150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38144555

RESUMEN

Preclinical and clinical studies suggest that hypothyroidism might cause hepatic endocrine and metabolic disturbances with features that mimic deficiencies of testosterone and/or GH. The absence of physiological interactions between testosterone and GH can be linked to male differentiated liver diseases. Testosterone plays relevant physiological effects on somatotropic-liver axis and liver composition and the liver is a primary organ of interactions between testosterone and GH. However, testosterone exerts many effects on liver through complex and poorly understood mechanisms. Testosterone impacts liver functions by binding to the Androgen Receptor, and, indirectly, through its conversion to estradiol, and cooperation with GH. However, the role of testosterone, and its interaction with GH, in the hypothyroid liver, remains unclear. In the present work, the effects of testosterone, and how they impact on GH-regulated whole transcriptome and lipid composition in the liver, were studied in the context of adult hypothyroid-orchiectomized rats. Testosterone replacement positively modulated somatotropic-liver axis and impacted liver transcriptome involved in lipid and glucose metabolism. In addition, testosterone enhanced the effects of GH on the transcriptome linked to lipid biosynthesis, oxidation-reduction, and metabolism of unsaturated and long-chain fatty acids (FA). However, testosterone decreased the hepatic content of cholesterol esters and triacylglycerols and increased fatty acids whereas GH increased neutral lipids and decreased polar lipids. Biological network analysis of the effects of testosterone on GH-regulated transcriptome confirmed a close connection with crucial proteins involved in steroid and fatty acid metabolism. Taken together, this comprehensive analysis of gene expression and lipid profiling in hypothyroid male liver reveals a functional interplay between testosterone and pulsed GH administration.


Asunto(s)
Hormona del Crecimiento , Hipotiroidismo , Animales , Masculino , Ratas , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Hormona del Crecimiento/metabolismo , Hipotiroidismo/complicaciones , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hígado/metabolismo , Testosterona/metabolismo , Transcriptoma
2.
Int J Biol Sci ; 19(6): 1731-1747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063429

RESUMEN

Triple-negative breast cancer (TNBC) is difficult to treat; therefore, the development of drugs directed against its oncogenic vulnerabilities is a desirable goal. Herein, we report the antitumor effects of CM728, a novel quinone-fused oxazepine, against this malignancy. CM728 potently inhibited TNBC cell viability and decreased the growth of MDA-MB-231-induced orthotopic tumors. Furthermore, CM728 exerted a strong synergistic antiproliferative effect with docetaxel in vitro and this combination was more effective than the individual treatments in vivo. Chemical proteomic approaches revealed that CM728 bound to peroxiredoxin-1 (Prdx1), thereby inducing its oxidation. Molecular docking corroborated these findings. CM728 induced oxidative stress and a multi-signal response, including JNK/p38 MAPK activation and STAT3 inhibition. Interestingly, Prdx1 downregulation mimicked these effects. Finally, CM728 led to DNA damage, cell cycle blockage at the S and G2/M phases, and the activation of caspase-dependent apoptosis. Taken together, our results identify a novel compound with antitumoral properties against TNBC. In addition, we describe the mechanism of action of this drug and provide a rationale for the use of Prdx1 inhibitors, such as CM728, alone or in combination with other drugs, for the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Docetaxel/farmacología , Simulación del Acoplamiento Molecular , Proteómica , Neoplasias de la Mama Triple Negativas/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Biomed Pharmacother ; 157: 114060, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36455458

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide, but the precise intracellular mechanisms underlying the progression of this inflammation associated cancer are not well established. SOCS2 protein plays an important role in the carcinogenesis of different tumors by regulating cytokine signalling through the JAK/STAT axis. However, its role in HCC is unclear. Here, we investigate the role of SOCS2 in HCC progression and its potential as HCC biomarker. The effects of SOCS2 in HCC progression were evaluated in an experimental model of diethylnitrosamine (DEN)-induced HCC in C57BL/6 and SOCS2 deficient mice, in cultured hepatic cells, and in liver samples from HCC patients. Mice lacking SOCS2 showed higher liver tumor burden with increased malignancy grade, inflammation, fibrosis, and proliferation than their controls. Protein and gene expression analysis reported higher pSTAT5 and pSTAT3 activation, upregulation of different proteins involved in survival and proliferation, and increased levels of proinflammatory and pro-tumoral mediators in the absence of SOCS2. Clinically relevant, downregulated expression of SOCS2 was found in neoplasia from HCC patients compared to healthy liver tissue, correlating with the malignancy grade. In summary, our data show that lack of SOCS2 increases susceptibility to chemical-induced HCC and suggest the tumor suppressor role of this protein by regulating the oncogenic and inflammatory responses mediated by STAT5 and STAT3 in the liver. Hence, SOCS2 emerges as an attractive target molecule and potential biomarker to deepen in the study of HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Proliferación Celular , Dietilnitrosamina/toxicidad , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
5.
Cancers (Basel) ; 14(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36358593

RESUMEN

Tamoxifen improves the overall survival rate in hormone receptor-positive breast cancer patients. However, despite the fact that it exerts antagonistic effects on the ERα, it can act as a partial agonist, resulting in tumor growth in estrogen-sensitive tissues. In this study, highly functionalized 5-hydroxy-2H-pyrrol-2-ones were synthesized and evaluated by using ERα- and phenotype-based screening assays. Compounds 32 and 35 inhibited 17ß-estradiol (E2)-stimulated ERα-mediated transcription of the luciferase reporter gene in breast cancer cells without inhibition of the transcriptional activity mediated by androgen or glucocorticoid receptors. Compound 32 regulated E2-stimulated ERα-mediated transcription by partial antagonism, whereas compound 35 caused rapid and non-competitive inhibition. Monitoring of 2D and 3D cell growth confirmed potent antitumoral effects of both compounds on ER-positive breast cancer cells. Furthermore, compounds 32 and 35 caused apoptosis and blocked the cell cycle of ER-positive breast cancer cells in the sub-G1 and G0/G1 phases. Interestingly, compound 35 suppressed the functional activity of ERα in the uterus, as demonstrated by the inhibition of E2-stimulated transcription of estrogen and progesterone receptors and alkaline phosphatase enzymatic activity. Compound 35 showed a relatively low binding affinity with ERα. However, its antiestrogenic effect was associated with an increased polyubiquitination and a reduced protein expression of ERα. Clinically relevant, a possible combinatory therapy with compound 35 may enhance the antitumoral efficacy of 4-hydroxy-tamoxifen in ER-positive breast cancer cells. In silico ADME predictions indicated that these compounds exhibit good drug-likeness, which, together with their potential antitumoral effects and their lack of estrogenic activity, offers a pharmacological opportunity to deepen the study of ER-positive breast cancer treatment.

6.
Pharmaceuticals (Basel) ; 15(5)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35631411

RESUMEN

Based on molecular docking studies on the ERα, a series of lignan derivatives (3-16) were designed and semisynthesized from the natural dibenzylbutyrolactones bursehernin (1) and matairesinol dimethyl ether (2). To examine their estrogenic and antiestrogenic potencies, the effects of these compounds on estrogen receptor element (ERE)-driven reporter gene expression and viability in human ER+ breast cancer cells were evaluated. Lignan compounds induced ERE-driven reporter gene expression with very low potency as compared with the pure agonist E2. However, coincubation of 5 µM of lignan derivatives 1, 3, 4, 7, 8, 9, 11, 13, and 14 with increasing concentrations of E2 (from 0.01 pM to 1 nM) reduced both the potency and efficacy of pure agonists. The binding to the rhERα-LBD was validated by TR-FRET competitive binding assay and lignans bound to the rhERα with IC50 values from 0.16 µM (compound 14) to 6 µM (compound 4). Induced fit docking (IFD) and molecular dynamics (MD) simulations for compound 14 were carried out to further investigate the binding mode interactions. Finally, the in silico ADME predictions indicated that the most potent lignan derivatives exhibited good drug-likeness.

7.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34681250

RESUMEN

A set of new dihydro-1H-pyrazolo[1,3-b]pyridine and pyrazolo[1,3-b]pyridine embelin derivatives was synthesized through a multicomponent reaction from natural embelin, 3-substituted-5-aminopyrazoles and aldehydes. The synthesized compounds were evaluated against three hematologic tumor cell lines, HEL (acute erythroid leukemia), K-562 (chronic myeloid leukemia) and HL-60 (acute myeloid leukemia), and five breast cancer cell lines (SKBR3, MCF-7, MDA-MB-231, BT-549, HS-578T). The primate non-malignant kidney Vero cell line was used as the control of cytotoxicity. From the obtained results, some structure-activity relationships were outlined. Furthermore, in silico prediction of physicochemical properties and ADME parameters were determined for the derivatives with the best antiproliferative values.

8.
Biomed Pharmacother ; 144: 112330, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34673425

RESUMEN

Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Mesilato de Imatinib/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Naftoquinonas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT5/metabolismo , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Factor de Transcripción STAT5/genética , Transducción de Señal
9.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802143

RESUMEN

(1) Background: Chemotherapy-induced peripheral neuropathy (CIPN) decreases the quality of life of patients and can lead to a dose reduction and/or the interruption of chemotherapy treatment, limiting its effectiveness. Potential pathophysiological mechanisms involved in the pathogenesis of CIPN include chronic oxidative stress and subsequent increase in free radicals and proinflammatory cytokines. Approaches for the treatment of CIPN are highly limited in their number and efficacy, although several antioxidant-based therapies have been tried. On the other hand, ozone therapy can induce an adaptive antioxidant and anti-inflammatory response, which could be potentially useful in the management of CIPN. (2) Methods: The aims of this works are: (a) to summarize the potential mechanisms that could induce CIPN by the most relevant drugs (platinum, taxanes, vinca alkaloids, and bortezomib), with particular focus on the role of oxidative stress; (b) to summarize the current situation of prophylactic and treatment approaches; (c) to describe the action mechanisms of ozone therapy to modify oxidative stress and inflammation with its potential repercussions for CIPN; (d) to describe related experimental and clinical reports with ozone therapy in chemo-induced neurologic symptoms and CIPN; and (e) to show the main details about an ongoing focused clinical trial. (3) Results: A wide background relating to the mechanisms of action and a small number of experimental and clinical reports suggest that ozone therapy could be useful to prevent or improve CIPN. (4) Conclusions: Currently, there are no clinically relevant approaches for the prevention and treatment of stablished CIPN. The potential role of ozone therapy in this syndrome merits further research. Randomized controlled trials are ongoing.


Asunto(s)
Antineoplásicos/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Ozono/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/prevención & control , Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Front Oncol ; 11: 626971, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718197

RESUMEN

A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.

11.
Molecules ; 24(21)2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671684

RESUMEN

A series of 34 1,2,3-triazole-naphthoquinone conjugates were synthesized via copper-catalyzed cycloaddition (CuAAC). They were evaluated for their in vitro antimalarial activity against chloroquine-sensitive strains of Plasmodium falciparum and against three different tumor cell lines (SKBr-3, MCF-7, HEL). The most active antimalarial compounds showed a low antiproliferative activity. Simplified analogues were also obtained and some structure-activity relationships were outlined. The best activity was obtained by compounds 3s and 3j, having IC50 of 0.8 and 1.2 µM, respectively. Molecular dockings were also carried on Plasmodium falciparum enzyme dihydroorotate dehydrogenase (PfDHODH) in order to rationalize the results.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Naftoquinonas/síntesis química , Naftoquinonas/farmacología , Plasmodium falciparum/efectos de los fármacos , Triazoles/síntesis química , Triazoles/farmacología , Antimaláricos/química , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Naftoquinonas/química , Triazoles/química
12.
Antioxidants (Basel) ; 8(12)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779159

RESUMEN

(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.

13.
Int J Radiat Oncol Biol Phys ; 104(4): 913-923, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30922944

RESUMEN

PURPOSE: To evaluate the role of liver X receptor (LXR) nuclear receptors on irradiation-induced cell death and polarization of macrophages and the potential implications in the context of radiation therapy treatment of cancer. METHODS AND MATERIALS: Primary and immortalized murine bone marrow-derived macrophages (BMDMs) from wild type or LXR double knock-out mice were exposed to gamma irradiation. Subsequently, analysis of LXR signaling on cell proliferation and cytotoxicity induced by ionizing radiation was determined by time-lapse photomicroscopy. Genotoxic cell damage was evaluated by Western blot of γ-H2AX and p53. Pyroptosis was analyzed through cell viability assay, lactate dehydrogenase release assay, and Western blot of caspase-1 active protein. Expression of inflammatory markers was measured by real-time quantitative polymerase chain reaction. RESULTS: Genetic and pharmacologic inactivation of LXR induced radiosensitivity of macrophages. LXR deficiency decreased cell proliferation and enhanced cytotoxicity induced by ionizing radiation in both immortalized and primary BMDMs. Protein levels of γ-H2AX and p53, both involved in response to cell damage, were exacerbated in LXR-deficient macrophages exposed to irradiation. Cell membrane damage was augmented and cell viability was decreased in LXR-deficient macrophages compared with LXR wild type macrophages in response to irradiation. In addition, LXR deficiency enhanced both caspase-1 activation and lactate dehydrogenase release in BMDM exposed inflammasome activators. LXR inactivation or deficiency markedly increased the expression of proinflammatory markers IL-1ß, IL-6, and inducible nitric oxide synthase in irradiated macrophages. CONCLUSIONS: The present work identifies LXR transcription factors as potential therapeutic targets to enhance the suppressive effects of radiation therapy on tumor growth through induction of macrophage cell death and activation of the inflammatory cascade.


Asunto(s)
Supervivencia Celular , Receptores X del Hígado/metabolismo , Macrófagos/efectos de la radiación , Tolerancia a Radiación , Animales , Muerte Celular , Polaridad Celular , Proliferación Celular , Roturas del ADN de Doble Cadena , Rayos gamma , Expresión Génica , Histonas/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Receptores X del Hígado/antagonistas & inhibidores , Receptores X del Hígado/genética , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Neoplasias/radioterapia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Piroptosis , Radiación Ionizante , Reproducibilidad de los Resultados , Proteína p53 Supresora de Tumor/metabolismo
14.
Oncogene ; 38(24): 4657-4668, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30783189

RESUMEN

The signal transducer and activator of transcription (STAT) are transcription factors that work via JAK/STAT pathway regulating the expression of genes involved in cell survival, proliferation, differentiation, development, immune response, and, among other essential biological functions, hematopoiesis. JAK/STAT signaling is strictly regulated under normal physiological conditions. However, a large group of diverse diseases has been associated to an aberrant regulation of STAT factors. Erroneous modulation of the pathway leads to constitutive STAT activation, thereby driving proliferation, inflammation, and an uncontrolled immune response. Deregulated STAT5 activation has been found in the development of many hematopoietic tumors, including chronic and acute leukemias, polycythemia vera, and lymphoma. Mutations in the kinases that phosphorylate STAT5, and/or overexpression of the upstream receptor-associated tyrosine kinases have been suggested as the main drivers of constitutive STAT5 activation. Hyper-activated STAT5 leads to the aberrant expression of its target genes including antiapoptotic, proliferative, and pro-inflammatory genes, favouring tumorigenesis. In this review, we intent to discuss the biology of JAK/STAT pathway, with particular focus on STAT5 and its crucial role in the development and progression of hematologic malignancies. Furthermore, we provide a synopsis of potential therapeutic strategies based on STAT5 activity inhibition that may represent an excellent opportunity for drug development in oncohematology.


Asunto(s)
Antineoplásicos/uso terapéutico , Desarrollo de Medicamentos , Neoplasias Hematológicas/tratamiento farmacológico , Oncología Médica , Factor de Transcripción STAT5/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Antineoplásicos/química , Desarrollo de Medicamentos/tendencias , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Humanos , Quinasas Janus/fisiología , Oncología Médica/métodos , Oncología Médica/tendencias , Factores de Transcripción STAT/fisiología , Transducción de Señal
16.
ACS Chem Biol ; 13(8): 1950-1957, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29878754

RESUMEN

Naphthoquinones are among the most active natural products obtained from plants and microorganisms. Naphthoquinones exert their biological activities through pleiotropic mechanisms that include reactivity against cell nucleophiles, generation of reactive oxygen species (ROS), and inhibition of proteins. Here, we report a mechanistic antiproliferative study performed in the yeast Saccharomyces cerevisiae for several derivatives of three important natural naphthoquinones: lawsone, juglone, and ß-lapachone. We have found that (i) the free hydroxyl group of lawsone and juglone modulates toxicity; (ii) lawsone and juglone derivatives differ in their mechanisms of action, with ROS generation being more important for the former; and (iii) a subset of derivatives possess the capability to disrupt mitochondrial function, with ß-lapachones being the most potent compounds in this respect. In addition, we have cross-compared yeast results with antibacterial and antitumor activities. We discuss the relationship between the mechanistic findings, the antiproliferative activities, and the physicochemical properties of the naphthoquinones.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Naftoquinonas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Estructura Molecular , Naftoquinonas/química , Estrés Oxidativo/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad
17.
Front Pharmacol ; 9: 1546, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30687103

RESUMEN

BCR-ABL1-STAT5 is an oncogenic signaling pathway in human chronic myelogenous leukemia (CML) and it represents a valid target for anti-CML drug design. Resistance to direct BCR-ABL1 inhibitors is a common clinical issue, so STAT5 inhibition has become an interesting alternative target. In this study, the effects of NPQ-C6, a novel naphtoquinone-coumarin conjugate, were evaluated on human CML-derived K562 cells. Live-Cell Imaging analysis revealed that NPQ-C6 inhibited 2D (IC50AUC = 1.4 ± 0.6 µM) growth of CML cells. NPQ-C6 increased sub-G1 and reduced G0/G1 cell cycle phases in a dose- and time-dependent manner. This effect on cell cycle was related to increased levels of apoptotic nuclei, cleavage of caspase-3, -9, and PARP and annexin V-positive cells. NPQ-C6 increased γH2AX, a double-strand DNA break marker. NPQ-C6 showed a wide range of modulatory effects on cell signaling through an early increased phosphorylation of JNK, P38-MAPK and AKT, and decreased phosphorylation of ERK1/2, BCR-ABL1, and STAT5. NPQ-C6 inhibited expression of c-MYC and PYM-1, two target gene products of BCR-ABL1/STAT5 signaling pathway. Cytokine-induced activation of STAT5/STAT3-dependent transcriptional and DNA binding activities were also inhibited by NPQ-C6. Notably, NPQ-C6 maintained its activity on BCR-ABL1/STAT5/c-MYC/PIM-1 oncogenic pathway in imatinib-resistant cells. Molecular modeling suggested BCR-ABL1 and JAK2 proteins as NPQ-C6 targets. In summary, our data show a novel multikinase modulator that might be therapeutically effective in BCR-ABL1-STAT5-related malignancies.

18.
J Med Entomol ; 55(2): 468-471, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29045705

RESUMEN

A zoonotic, opportunistic out-break of tropical rat mite Ornithonyssus bacoti [Acari: Macronyssidae; Ornithonyssus bacoti (Hirst)] in an animal facility, is described. Immunocompetent mice [Mus musculus (Linnaeus)] and rat [Rattus norvegicus (Berkenhout)] strains in a conventional health status facility suffered from scratching and allopecia and staff members suffered from pruritic, erythemato-papular lesions, presumed to be allergic in origin. O. bacoti was identified and treatment with a 0.1% ivermectin solution led to its complete erradication. Safety assessment revealed no signs of acute toxicity in any animal strain. Following this inexpensive strategy, 7 wk after the initial dose, samples were negative for the presence of acari. At the time of this report, 26 months after diagnosis, O. bacoti remains undetected.


Asunto(s)
Acaricidas/uso terapéutico , Brotes de Enfermedades/veterinaria , Ivermectina/uso terapéutico , Infestaciones por Ácaros/veterinaria , Enfermedades de los Roedores/epidemiología , Enfermedades de los Roedores/prevención & control , Animales , Erradicación de la Enfermedad , Femenino , Masculino , Ratones , Infestaciones por Ácaros/epidemiología , Infestaciones por Ácaros/prevención & control , Ácaros , Prurito/parasitología , Ratas , España/epidemiología , Zoonosis/epidemiología , Zoonosis/prevención & control
19.
Exp Parasitol ; 183: 218-223, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28916457

RESUMEN

Acanthamoeba is an opportunistic pathogen which is the causal agent of a sight-threatening ulceration of the cornea known as Acanthamoeba keratitis (AK) and, more rarely, an infection of the central nervous system called "granulomatous amoebic encephalitis" (GAE). The symptoms of AK are non-specific, and so it can be misdiagnosed as a viral, bacterial, or fungal keratitis. Furthermore, current therapeutic measures against AK are arduous, and show limited efficacy against the cyst stage of Acanthamoeba. 1H-Phenalen-1-one (PH) containing compounds have been isolated from plants and fungi, where they play a crucial role in the defense mechanism of plants. Natural as well as synthetic PHs exhibit a diverse range of biological activities against fungi, protozoan parasites or human cancer cells. New synthetic PHs have been tested in this study and they show a potential activity against this protozoa.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Fenalenos/farmacología , Amebicidas/química , Amebicidas/toxicidad , Anfotericina B/farmacología , Anfotericina B/toxicidad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Células MCF-7/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fenalenos/química , Fenalenos/toxicidad
20.
Ann Thorac Surg ; 104(2): 458-464, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28549673

RESUMEN

BACKGROUND: No satisfactory treatment exists for chronic rejection (CR) after lung transplantation (LT). Our objective was to assess whether ozone (O3) treatment could ameliorate CR. METHODS: Male Sprague-Dawley inbred rats (n = 36) were randomly assigned into four groups: (1) control (n = 6), (2) sham (n = 6), (3) LT (n = 12), and (4) O3-LT (n = 12). Animals underwent left LT. O3 was rectally administered daily for 2 weeks before LT (from 20 to 50 µg) and 3 times/wk (50 µg/dose) up to 3 months. CR; acute rejection; and Hspb27, Prdx, Epas1, Gpx3, Vegfa, Sftpa1, Sftpb, Plvap, Klf2, Cldn5, Thbd, Dsip, Fmo2, and Sepp1 mRNA gene expression were determined. RESULTS: Severe CR was observed in all animals of LT group, but none of the O3-LT animals showed signs of CR, just a mild acute rejection was observed in 1 animal. A significant decrease of Hspb27, Prdx, Epas1, Gpx3, Vegfa, Sftpa1, Sftpb, Plvap, Klf2, Cldn5, Thbd, Dsip, and Fmo2 gene expression in the O3-LT group was observed CONCLUSIONS: O3 therapy significantly delayed the onset of CR regulating the expression of genes involved in its pathogenesis. No known immunosuppressive therapy has been capable of achieving similar results. From a translational point of view, O3 therapy could become a new adjuvant treatment for CR in patients undergoing LT.


Asunto(s)
Rechazo de Injerto/prevención & control , Trasplante de Pulmón/efectos adversos , Ozono/administración & dosificación , Terapia Respiratoria/métodos , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Oxidantes Fotoquímicos/administración & dosificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...