Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Prostate ; 83(4): 376-384, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36564933

RESUMEN

BACKGROUND: There is a considerable need to incorporate biomarkers of resistance to new antiandrogen agents in the management of castration-resistant prostate cancer (CRPC). METHODS: We conducted a phase II trial of enzalutamide in first-line chemo-naïve asymptomatic or minimally symptomatic mCRPC and analyzed the prognostic value of TMPRSS2-ERG and other biomarkers, including circulating tumor cells (CTCs), androgen receptor splice variant (AR-V7) in CTCs and plasma Androgen Receptor copy number gain (AR-gain). These biomarkers were correlated with treatment response and survival outcomes and developed a clinical-molecular prognostic model using penalized cox-proportional hazard model. This model was validated in an independent cohort. RESULTS: Ninety-eight patients were included. TMPRSS2-ERG fusion gene was detected in 32 patients with no differences observed in efficacy outcomes. CTC detection was associated with worse outcome and AR-V7 in CTCs was associated with increased rate of progression as best response. Plasma AR gain was strongly associated with an adverse outcome, with worse median prostate specific antigen (PSA)-PFS (4.2 vs. 14.7 m; p < 0.0001), rad-PFS (4.5 vs. 27.6 m; p < 0.0001), and OS (12.7 vs. 38.1 m; p < 0.0001). The clinical prognostic model developed in PREVAIL was validated (C-Index 0.70) and the addition of plasma AR (C-Index 0.79; p < 0.001) increased its prognostic ability. We generated a parsimonious model including alkaline phosphatase (ALP); PSA and AR gain (C-index 0.78) that was validated in an independent cohort. CONCLUSIONS: TMPRSS2-ERG detection did not correlate with differential activity of enzalutamide in first-line mCRPC. However, we observed that CTCs and plasma AR gain were the most relevant biomarkers.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Biomarcadores de Tumor/genética , Células Neoplásicas Circulantes/patología , Nitrilos/uso terapéutico , Pronóstico , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética
2.
Blood Adv ; 5(24): 5453-5467, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34516618

RESUMEN

ß1-Tubulin plays a major role in proplatelet formation and platelet shape maintenance, and pathogenic variants in TUBB1 lead to thrombocytopenia and platelet anisocytosis (TUBB1-RT). To date, the reported number of pedigrees with TUBB1-RT and of rare TUBB1 variants with experimental demonstration of pathogenicity is limited. Here, we report 9 unrelated families presenting with thrombocytopenia carrying 6 ß1-tubulin variants, p.Cys12LeufsTer12, p.Thr107Pro, p.Gln423*, p.Arg359Trp, p.Gly109Glu, and p.Gly269Asp, the last of which novel. Segregation studies showed incomplete penetrance of these variants for platelet traits. Indeed, most carriers showed macrothrombocytopenia, some only increased platelet size, and a minority had no abnormalities. Moreover, only homozygous carriers of the p.Gly109Glu variant displayed macrothrombocytopenia, highlighting the importance of allele burden in the phenotypic expression of TUBB1-RT. The p.Arg359Trp, p.Gly269Asp, and p.Gly109Glu variants deranged ß1-tubulin incorporation into the microtubular marginal ring in platelets but had a negligible effect on platelet activation, secretion, or spreading, suggesting that ß1-tubulin is dispensable for these processes. Transfection of TUBB1 missense variants in CHO cells altered ß1-tubulin incorporation into the microtubular network. In addition, TUBB1 variants markedly impaired proplatelet formation from peripheral blood CD34+ cell-derived megakaryocytes. Our study, using in vitro modeling, molecular characterization, and clinical investigations provides a deeper insight into the pathogenicity of rare TUBB1 variants. These novel data expand the genetic spectrum of TUBB1-RT and highlight a remarkable heterogeneity in its clinical presentation, indicating that allelic burden or combination with other genetic or environmental factors modulate the phenotypic impact of rare TUBB1 variants.


Asunto(s)
Trombocitopenia , Tubulina (Proteína) , Plaquetas , Humanos , Megacariocitos , Trombocitopenia/genética , Tubulina (Proteína)/genética
3.
Int J Mol Sci ; 22(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672737

RESUMEN

Neutrophil extracellular traps (NETs) are formed after neutrophils expelled their chromatin content in order to primarily capture and eliminate pathogens. However, given their characteristics due in part to DNA and different granular proteins, NETs may induce a procoagulant response linking inflammation and thrombosis. Unraveling NET formation molecular mechanisms as well as the intracellular elements that regulate them is relevant not only for basic knowledge but also to design diagnostic and therapeutic tools that may prevent their deleterious effects observed in several inflammatory pathologies (e.g., cardiovascular and autoimmune diseases, cancer). Among the potential elements involved in NET formation, several studies have investigated the role of microRNAs (miRNAs) as important regulators of this process. miRNAs are small non-coding RNAs that have been involved in the control of almost all physiological processes in animals and plants and that are associated with the development of several pathologies. In this review, we give an overview of the actual knowledge on NETs and their implication in pathology with a special focus in cardiovascular diseases. We also give a brief overview on miRNA biology to later focus on the different miRNAs implicated in NET formation and the perspectives opened by the presented data.


Asunto(s)
Trampas Extracelulares/metabolismo , MicroARNs/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Modelos Biológicos
5.
Haematologica ; 106(6): 1636-1646, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32586906

RESUMEN

Neutrophil extracellular traps (NETs) induce a procoagulant response linking inflammation and thrombosis. Low levels of miR-146a, a brake of inflammatory response, are involved in higher risk for cardiovascular events, but the mechanisms explaining how miR-146a exerts its function remain largely undefined. The aim of this study was to explore the impact of miR-146a deficiency in NETosis both, in sterile and non-sterile models in vivo, and to inquire into the underlying mechanism. Two models of inflammation were performed: 1) Ldlr-/- mice transplanted with bone marrow from miR-146a-/- or wild type (WT) were fed high-fat diet, generating an atherosclerosis model; and 2) an acute inflammation model was generated by injecting lipopolysaccharide (LPS) (1 mg/Kg) into miR-146a-/- and WT mice. miR-146a deficiency increased NETosis in both models. Accordingly, miR-146a-/- mice showed significant reduced carotid occlusion time and elevated levels of NETs in thrombi following FeCl3-induced thrombosis. Infusion of DNAse I abolished arterial thrombosis in WT and miR-146a-/- mice. Interestingly, miR-146a deficient mice have aged, hyperreactive and pro-inflammatory neutrophils in circulation that are more prone to form NETs independently of the stimulus. Furthermore, we demonstrated that community acquired pneumonia (CAP) patients with reduced miR-146a levels associated with the T variant of the functional rs2431697, presented an increased risk for cardiovascular events due in part to an increased generation of NETs.


Asunto(s)
Trampas Extracelulares , MicroARNs , Trombosis , Anciano , Animales , Humanos , Ratones , Ratones Noqueados , MicroARNs/genética , Neutrófilos , Trombosis/genética
6.
Thromb Haemost ; 121(9): 1138-1150, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33352593

RESUMEN

The new concept of thrombosis associated with an inflammatory process is called thromboinflammation. Indeed, both thrombosis and inflammation interplay one with the other in a feed forward manner amplifying the whole process. This pathological reaction in response to a wide variety of sterile or non-sterile stimuli eventually causes acute organ damage. In this context, neutrophils, mainly involved in eliminating pathogens as an early barrier to infection, form neutrophil extracellular traps (NETs) that are antimicrobial structures responsible of deleterious side effects such as thrombotic complications. Although NETosis mechanisms are being unraveled, there are still many regulatory elements that have to be discovered. Micro-ribonucleic acids (miRNAs) are important modulators of gene expression implicated in human pathophysiology almost two decades ago. Among the different miRNAs implicated in inflammation, miR-146a is of special interest because: (1) it regulates among others, Toll-like receptors/nuclear factor-κB axis which is of paramount importance in inflammatory processes, (2) it regulates the formation of NETs by modifying their aging phenotype, and (3) it has expression levels that may decrease among individuals up to 50%, controlled in part by the presence of several polymorphisms. In this article, we will review the main characteristics of miR-146a biology. In addition, we will detail how miR-146a is implicated in the development of two paradigmatic diseases in which thrombosis and inflammation interact, cardiovascular diseases and sepsis, and their association with the presence of miR-146a polymorphisms and the use of miR-146a as a marker of cardiovascular diseases and sepsis.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Trampas Extracelulares/metabolismo , MicroARNs/metabolismo , Neutrófilos/metabolismo , Sepsis/metabolismo , Tromboinflamación/metabolismo , Animales , Coagulación Sanguínea , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/genética , Células Endoteliales/metabolismo , Trampas Extracelulares/genética , Humanos , MicroARNs/genética , Polimorfismo Genético , Sepsis/sangre , Sepsis/genética , Tromboinflamación/sangre , Tromboinflamación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...