Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630975

RESUMEN

The preparation of new and functional nanostructures has received more attention in the scientific community in the past decade due to their wide application versatility. Among these nanostructures, micelles appear to be one of the most interesting supramolecular organizations for biomedical applications because of their ease of synthesis and reproducibility and their biocompatibility since they present an organization similar to the cell membrane. In this work, we developed micellar nanocarrier systems from surfactant molecules derived from oleic acid and tetraethylene glycol that were able to encapsulate and in vitro release the drug dexamethasone. In addition, the designed micelle precursors were able to functionalize metallic NPs, such as gold NPs and iron oxide NPs, resulting in monodispersed hybrid nanomaterials with high stability in aqueous media. Therefore, a new triazole-derived micelle precursor was developed as a versatile encapsulation system, opening the way for the preparation of new micellar nanocarrier platforms for drug delivery, magnetic resonance imaging, or computed tomography contrast agents for therapeutic and diagnostic applications.

2.
Int J Mol Sci ; 22(24)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34948364

RESUMEN

Curcumin (Cur) is an anti-inflammatory polyphenol that can be complexed with polymeric cyclodextrin (CD) to improve solubility and bioavailability. The aim of the present work was to prepare a CurCD hydrogel to treat inflammatory skin conditions. Epichlorohydrin-ß-CD (EpißCD) was used as polymeric CD. To characterize the binary system, solid-state and in-solution studies were performed. Afterwards, an experimental design was performed to optimize the hydrogel system. Finally, the CurEpißCD hydrogel system was tested for anti-inflammatory activity using a HaCat psoriasis cell model. Co-grinded Cur/EpißCD binary system showed a strong interaction and Curcumin solubility was much improved. Its combination with Pluronic® F-127/hyaluronate hydrogel demonstrated an improvement in release rate and Curcumin permeation. After testing its anti-inflammatory activity, the system showed a significant reduction in IL-6 levels. Hydrogel-containing CurEpißCD complex is a great alternative to treat topical inflammatory diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Curcumina/administración & dosificación , Portadores de Fármacos/química , Epiclorhidrina/química , beta-Ciclodextrinas/química , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Curcumina/química , Curcumina/farmacología , Liberación de Fármacos , Humanos , Psoriasis/tratamiento farmacológico , Solubilidad
3.
Pharmaceutics ; 10(4)2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513858

RESUMEN

In this study, the encapsulation of curcumin (Cur) in "drug-in-cyclodextrin-in-liposomes (DCL)" by following the double-loading technique (DL) was proposed, giving rise to DCL⁻DL. The aim was to analyze the effect of cyclodextrin (CD) on the physicochemical, stability, and drug-release properties of liposomes. After selecting didodecyldimethylammonium bromide (DDAB) as the cationic lipid, DCL⁻DL was formulated by adding 2-hydroxypropyl-α/ß/γ-CD (HPßCD)⁻Cur complexes into the aqueous phase. A competitive effect of cholesterol (Cho) for the CD cavity was found, so cholesteryl hemisuccinate (Chems) was used. The optimal composition of the DCL⁻DL bilayer was obtained by applying Taguchi methodology and regression analysis. Vesicles showed a lower drug encapsulation efficiency compared to conventional liposomes (CL) and CL containing HPßCD in the aqueous phase. However, the presence of HPßCD significantly increased vesicle deformability and Cur antioxidant activity over time. In addition, drug release profiles showed a sustained release after an initial burst effect, fitting to the Korsmeyer-Peppas kinetic model. Moreover, a direct correlation between the area under the curve (AUC) of dissolution profiles and flexibility of liposomes was obtained. It can be concluded that these "drug-in-cyclodextrin-in-deformable" liposomes in the presence of HPßCD may be a promising carrier for increasing the entrapment efficiency and stability of Cur without compromising the integrity of the liposome bilayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...