Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Exp Med ; 220(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37906166

RESUMEN

Due to their suppressive capacity, regulatory T cells (Tregs) have attracted growing interest as an adoptive cellular therapy for the prevention of allograft rejection, but limited Treg recovery and lower quality of adult-derived Tregs could represent an obstacle to success. To address this challenge, we developed a new approach that provides large quantities of Tregs with high purity and excellent features, sourced from thymic tissue routinely removed during pediatric cardiac surgeries (thyTregs). We report on a 2-year follow-up of the first patient treated worldwide with thyTregs, included in a phase I/II clinical trial evaluating the administration of autologous thyTreg in infants undergoing heart transplantation. In addition to observing no adverse effects that could be attributed to thyTreg administration, we report that the Treg frequency in the periphery was preserved during the 2-year follow-up period. These initial results are consistent with the trial objective, which is to confirm safety of the autologous thyTreg administration and its capacity to restore the Treg pool.


Asunto(s)
Trasplante de Corazón , Linfocitos T Reguladores , Adulto , Humanos , Lactante , Rechazo de Injerto , Trasplante Homólogo
3.
Biofabrication ; 14(4)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36007502

RESUMEN

Biofabrication of human tissues has seen a meteoric growth triggered by recent technical advancements such as human induced pluripotent stem cells (hiPSCs) and additive manufacturing. However, generation of cardiac tissue is still hampered by lack of adequate mechanical properties and crucially by the often unpredictable post-fabrication evolution of biological components. In this study we employ melt electrowriting (MEW) and hiPSC-derived cardiac cells to generate fibre-reinforced human cardiac minitissues. These are thoroughly characterized in order to build computational models and simulations able to predict their post-fabrication evolution. Our results show that MEW-based human minitissues display advanced maturation 28 post-generation, with a significant increase in the expression of cardiac genes such as MYL2, GJA5, SCN5A and the MYH7/MYH6 and MYL2/MYL7 ratios. Human iPSC-cardiomyocytes are significantly more aligned within the MEW-based 3D tissues, as compared to conventional 2D controls, and also display greater expression of C×43. These are also correlated with a more mature functionality in the form of faster conduction velocity. We used these data to develop simulations capable of accurately reproducing the experimental performance. In-depth gauging of the structural disposition (cellular alignment) and intercellular connectivity (C×43) allowed us to develop an improved computational model able to predict the relationship between cardiac cell alignment and functional performance. This study lays down the path for advancing in the development ofin silicotools to predict cardiac biofabricated tissue evolution after generation, and maps the route towards more accurate and biomimetic tissue manufacture.


Asunto(s)
Células Madre Pluripotentes Inducidas , Biomimética , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ingeniería de Tejidos/métodos
4.
BioTech (Basel) ; 11(3)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35892928

RESUMEN

Translational science has been introduced as the nexus among the scientific and the clinical field, which allows researchers to provide and demonstrate that the evidence-based research can connect the gaps present between basic and clinical levels. This type of research has played a major role in the field of cardiovascular diseases, where the main objective has been to identify and transfer potential treatments identified at preclinical stages into clinical practice. This transfer has been enhanced by the intromission of digital health solutions into both basic research and clinical scenarios. This review aimed to identify and summarize the most important translational advances in the last years in the cardiovascular field together with the potential challenges that still remain in basic research, clinical scenarios, and regulatory agencies.

5.
Front Immunol ; 13: 918565, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812460

RESUMEN

MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Tratamiento Basado en Trasplante de Células y Tejidos , Resultado del Tratamiento , Cordón Umbilical
6.
Front Immunol ; 13: 893576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651624

RESUMEN

Due to their suppressive capacity, the adoptive transfer of regulatory T cells (Treg) has acquired a growing interest in controlling exacerbated inflammatory responses. Limited Treg recovery and reduced quality remain the main obstacles in most current protocols where differentiated Treg are obtained from adult peripheral blood. An alternate Treg source is umbilical cord blood, a promising source of Treg cells due to the higher frequency of naïve Treg and lower frequency of memory T cells present in the fetus' blood. However, the Treg number isolated from cord blood remains limiting. Human thymuses routinely discarded during pediatric cardiac surgeries to access the retrosternal operative field has been recently proposed as a novel source of Treg for cellular therapy. This strategy overcomes the main limitations of current Treg sources, allowing the obtention of very high numbers of undifferentiated Treg. We have developed a novel good manufacturing practice (GMP) protocol to obtain large Treg amounts, with very high purity and suppressive capacity, from the pediatric thymus (named hereafter thyTreg). The total amount of thyTreg obtained at the end of the procedure, after a short-term culture of 7 days, reach an average of 1,757 x106 (range 50 x 106 - 13,649 x 106) cells from a single thymus. The thyTreg product obtained with our protocol shows very high viability (mean 93.25%; range 83.35% - 97.97%), very high purity (mean 92.89%; range 70.10% - 98.41% of CD25+FOXP3+ cells), stability under proinflammatory conditions and a very high suppressive capacity (inhibiting in more than 75% the proliferation of activated CD4+ and CD8+ T cells in vitro at a thyTreg:responder cells ratio of 1:1). Our thyTreg product has been approved by the Spanish Drug Agency (AEMPS) to be administered as cell therapy. We are recruiting patients in the first-in-human phase I/II clinical trial worldwide that evaluates the safety, feasibility, and efficacy of autologous thyTreg administration in children undergoing heart transplantation (NCT04924491). The high quality and amount of thyTreg and the differential features of the final product obtained with our protocol allow preparing hundreds of doses from a single thymus with improved therapeutic properties, which can be cryopreserved and could open the possibility of an "off-the-shelf" allogeneic use in another individual.


Asunto(s)
Factores de Transcripción Forkhead , Linfocitos T Reguladores , Traslado Adoptivo , Adulto , Linfocitos T CD8-positivos , Tratamiento Basado en Trasplante de Células y Tejidos , Niño , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos
7.
Transfusion ; 62(2): 374-385, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35023148

RESUMEN

BACKGROUND: Allogeneic stem cell transplantation is the treatment of choice for acute myeloid leukemia (AML) patients. Unmanipulated haploidentical transplantation (Haplo-HSCT) is commonly used for those AML patients who need a timely transplant and do not have a suitable matched donor, but relapse rates are still high, and improvements are needed. Adoptive immunotherapy using natural killer cells (NK cells) could be a promising tool to improved Haplo-HSCT but, to date, no optimal infusion and manufacturing protocols have been developed. STUDY DESIGN AND METHODS: In this study, we describe a quick and reproducible protocol for clinical-grade production of haploidentical donor NK cells using double immunomagnetic depletion and enrichment protocol and overnight IL-15 stimulation. RESULTS: Thus, we have obtained 8 viable and functional NK cell products that have been safely infused to five AML patients undergoing unmanipulated Haplo-HSCT. DISCUSSION: Our results demonstrate the safety and feasibility of manufactured NK IL15 cells obtained from an adult allogeneic donor in the setting of haploidentical transplantation for AML patients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Adulto , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Interleucina-15 , Células Asesinas Naturales , Leucemia Mieloide Aguda/tratamiento farmacológico
8.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685551

RESUMEN

Human cardiac progenitor cells (hCPC) are considered a good candidate in cell therapy for ischemic heart disease, demonstrating capacity to improve functional recovery after myocardial infarction (MI), both in small and large preclinical animal models. However, improvements are required in terms of cell engraftment and efficacy. Based on previously published reports, insulin-growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) have demonstrated substantial cardioprotective, repair and regeneration activities, so they are good candidates to be evaluated in large animal model of MI. We have validated porcine cardiac progenitor cells (pCPC) and lentiviral vectors to overexpress IGF-1 (co-expressing eGFP) and HGF (co-expressing mCherry). pCPC were transduced and IGF1-eGFPpos and HGF-mCherrypos populations were purified by cell sorting and further expanded. Overexpression of IGF-1 has a limited impact on pCPC expression profile, whereas results indicated that pCPC-HGF-mCherry cultures could be counter selecting high expresser cells. In addition, pCPC-IGF1-eGFP showed a higher cardiogenic response, evaluated in co-cultures with decellularized extracellular matrix, compared with native pCPC or pCPC-HGF-mCherry. In vivo intracoronary co-administration of pCPC-IGF1-eGFP and pCPC-HFG-mCherry (1:1; 40 × 106/animal), one week after the induction of an MI model in swine, revealed no significant improvement in cardiac function.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Infarto del Miocardio/fisiopatología , Porcinos
9.
Trials ; 22(1): 595, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488845

RESUMEN

BACKGROUND: Chronic lower limb ischemia develops earlier and more frequently in patients with type 2 diabetes mellitus. Diabetes remains the main cause of lower-extremity non-traumatic amputations. Current medical treatment, based on antiplatelet therapy and statins, has demonstrated deficient improvement of the disease. In recent years, research has shown that it is possible to improve tissue perfusion through therapeutic angiogenesis. Both in animal models and humans, it has been shown that cell therapy can induce therapeutic angiogenesis, making mesenchymal stromal cell-based therapy one of the most promising therapeutic alternatives. The aim of this study is to evaluate the feasibility, safety, and efficacy of cell therapy based on mesenchymal stromal cells derived from adipose tissue intramuscular administration to patients with type 2 diabetes mellitus with critical limb ischemia and without possibility of revascularization. METHODS: A multicenter, randomized double-blind, placebo-controlled trial has been designed. Ninety eligible patients will be randomly assigned at a ratio 1:1:1 to one of the following: control group (n = 30), low-cell dose treatment group (n = 30), and high-cell dose treatment group (n = 30). Treatment will be administered in a single-dose way and patients will be followed for 12 months. Primary outcome (safety) will be evaluated by measuring the rate of adverse events within the study period. Secondary outcomes (efficacy) will be measured by assessing clinical, analytical, and imaging-test parameters. Tertiary outcome (quality of life) will be evaluated with SF-12 and VascuQol-6 scales. DISCUSSION: Chronic lower limb ischemia has limited therapeutic options and constitutes a public health problem in both developed and underdeveloped countries. Given that the current treatment is not established in daily clinical practice, it is essential to provide evidence-based data that allow taking a step forward in its clinical development. Also, the multidisciplinary coordination exercise needed to develop this clinical trial protocol will undoubtfully be useful to conduct academic clinical trials in the field of cell therapy in the near future. TRIAL REGISTRATION: ClinicalTrials.gov NCT04466007 . Registered on January 07, 2020. All items from the World Health Organization Trial Registration Data Set are included within the body of the protocol.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Noma , Tejido Adiposo , Animales , Ensayos Clínicos Fase II como Asunto , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Método Doble Ciego , Humanos , Isquemia/diagnóstico , Isquemia/terapia , Estudios Multicéntricos como Asunto , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , SARS-CoV-2 , Resultado del Tratamiento
10.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502146

RESUMEN

Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs-PEG-cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs-PEG-cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.


Asunto(s)
Matriz Extracelular/química , Vesículas Extracelulares/metabolismo , Hidrogeles/química , Miocardio/citología , Polietilenglicoles/química , Animales , Vesículas Extracelulares/trasplante , Humanos , Ratones , Ratones Endogámicos BALB C , Miocardio/metabolismo , Células Madre/metabolismo , Porcinos
11.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34439098

RESUMEN

TAMs constitute a large fraction of infiltrating immune cells in melanoma tissues, but their significance for clinical outcomes remains unclear. We explored diverse TAM parameters in clinically relevant primary cutaneous melanoma samples, including density, location, size, and polarization marker expression; in addition, because cytokine production is a hallmark of macrophages function, we measured CCL20, TNF, and VEGFA intracellular cytokines by single-cell multiparametric confocal microscopy. The Kaplan-Meier method was used to analyze correlation with melanoma-specific disease-free survival and overall survival. No significant correlations with clinical parameters were observed for TAM density, morphology, or location. Significantly, higher contents of the intracellular cytokines CCL20, TNF, and VEGFA were quantified in TAMs infiltrating metastasizing compared to non-metastasizing skin primary melanomas (p < 0.001). To mechanistically explore cytokine up-regulation, we performed in vitro studies with melanoma-conditioned macrophages, using RNA-seq to explore involved pathways and specific inhibitors. We show that p53 and NF-κB coregulate CCL20, TNF, and VEGFA in melanoma-conditioned macrophages. These results delineate a clinically relevant pro-oncogenic cytokine profile of TAMs with prognostic significance in primary melanomas and point to the combined therapeutic targeting of NF-kB/p53 pathways to control the deviation of TAMs in melanoma.

12.
Stem Cell Rev Rep ; 17(6): 2235-2244, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34463902

RESUMEN

Biological treatments are one of the medical breakthroughs in the twenty-first century. The initial enthusiasm pushed the field towards indiscriminatory use of cell therapy regardless of the pathophysiological particularities of underlying conditions. In the reparative and regenerative cardiovascular field, the results of the over two decades of research in cell-based therapies, although promising still could not be translated into clinical scenario. Now, when we identified possible deficiencies and try to rebuild its foundations rigorously on scientific evidence, development of potency assays for the potential therapeutic product is one of the steps which will bring our goal of clinical translation closer. Although, highly challenging, the potency tests for cell products are considered as a priority by the regulatory agencies. In this paper we describe the main characteristics and challenges for a cell therapy potency test focusing on the cardiovascular field. Moreover, we discuss different steps and types of assays that should be taken into consideration for an eventual potency test development by tying together two fundamental concepts: target disease and expected mechanism of action. Development of potency assays for cell-based products consists in understanding the pathophysiology of the disease, identifying potential mechanisms of action (MoA) to counteract it and finding the most suitable cell-based product that exhibits these MoA. When applied, the potency assay needs to correlate bioactivity of the product, via a measurement related to the MoA, with treatment efficacy. However, in the cardiovascular field, the process faces several challenges and high requirements.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Corazón
13.
Front Cell Dev Biol ; 9: 797927, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127713

RESUMEN

Direct cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.5GFP reporter cardiac fibroblasts. We first established a new NKX2.5GFP reporter human induced pluripotent stem cell (hiPSC) line using a CRISPR-Cas9-based knock-in approach in order to preserve function which could alter the biology of the cells. The reporter was found to faithfully track NKX2.5 expressing cells in differentiated NKX2.5GFP hiPSC and the potential of NKX2.5-GFP + cells to give rise to the expected cardiac lineages, including functional ventricular- and atrial-like cardiomyocytes, was demonstrated. Then NKX2.5GFP cardiac fibroblasts were obtained through directed differentiation, and these showed typical fibroblast-like morphology, a specific marker expression profile and, more importantly, functionality similar to patient-derived cardiac fibroblasts. The advantage of using this approach is that it offers an unlimited supply of cellular models for research in cardiac reprogramming, and since NKX2.5 is expressed not only in cardiomyocytes but also in cardiovascular precursors, the detection of both induced cell types would be possible. These reporter lines will be useful tools for human direct cardiac reprogramming research and progress in this field.

14.
J Clin Periodontol ; 47(11): 1391-1402, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32946590

RESUMEN

AIM: To evaluate the safety and efficacy of autologous periodontal ligament-derived mesenchymal stem cells (PDL-MSCs) embedded in a xenogeneic bone substitute (XBS) for the regenerative treatment of intra-bony periodontal defects. MATERIAL AND METHODS: This quasi-randomized controlled pilot phase II clinical trial included patients requiring a tooth extraction and presence of one intra-bony lesion (1-2 walls). Patients were allocated to either the experimental (XBS + 10 × 106 PDL-MSCs/100 mg) or the control group (XBS). Clinical and radiographical parameters were recorded at baseline, 6, 9 and 12 months. The presence of adverse events was also evaluated. Chi-square, Student's t test, Mann-Whitney U, repeated-measures ANOVA and regression models were used. RESULTS: Twenty patients were included. No serious adverse events were reported. Patients in the experimental group (n = 9) showed greater clinical attachment level (CAL) gain (1.44, standard deviation [SD] = 1.87) and probing pocket depth (PPD) reduction (2.33, SD = 1.32) than the control group (n = 10; CAL gain = 0.88, SD = 1.68, and PPD reduction = 2.10, SD = 2.46), without statistically significant differences. CONCLUSION: The application of PDL-MSCs to XBS for the treatment of one- to two-wall intra-bony lesions was safe and resulted in low postoperative morbidity and appropriate healing, although its additional benefit, when compared with the XBS alone, was not demonstrated.


Asunto(s)
Pérdida de Hueso Alveolar , Sustitutos de Huesos , Células Madre Mesenquimatosas , Pérdida de Hueso Alveolar/diagnóstico por imagen , Pérdida de Hueso Alveolar/cirugía , Regeneración Ósea , Sustitutos de Huesos/uso terapéutico , Regeneración Tisular Guiada Periodontal , Humanos , Pérdida de la Inserción Periodontal/cirugía , Ligamento Periodontal
15.
Stem Cells Transl Med ; 9(12): 1500-1508, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32864818

RESUMEN

We evaluated the safety and feasibility of adipose-derived mesenchymal stem cells to treat endoscopically urinary incontinence after radical prostatectomy in men or female stress urinary. We designed two prospective, nonrandomized phase I-IIa clinical trials of urinary incontinence involving 9 men (8 treated) and 10 women to test the feasibility and safety of autologous mesenchymal stem cells for this use. Cells were obtained from liposuction containing 150 to 200 g of fat performed on every patient. After 4 to 6 weeks and under sedation, endoscopic intraurethral injection of the cells was performed. On each visit (baseline, 1, 3, 6, and 12 months), clinical parameters were measured, and blood samples, urine culture, and uroflowmetry were performed. Every patient underwent an urethrocystoscopy and urodynamic studies on the first and last visit. Data from pad test, quality-of-life and incontinence questionnaires, and pads used per day were collected at every visit. Statistical analysis was done by Wilcoxon signed-rank test. No adverse effects were observed. Three men (37.5%) and five women (50%) showed an objective improvement of >50% (P < .05) and a subjective improvement of 70% to 80% from baseline. In conclusion, intraurethral application of stem cells derived from adipose tissue is a safe and feasible procedure to treat urinary incontinence after radical prostatectomy or in female stress urinary incontinence. A statistically significant difference was obtained for pad-test improvement in 3/8 men and 5/10 women. Our results encourage studies to confirm safety and to analyze efficacy.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Incontinencia Urinaria/terapia , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Front Physiol ; 11: 922, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848863

RESUMEN

BACKGROUND: Mechanical stretch increases Na+ inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H+ exchanger activation, involving Ca2+ increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of I NaL current and Ca2+ overload. OBJECTIVE: This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. METHODS: Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of in vitro fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. RESULTS: HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, p < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm2, p < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, p < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, p < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, p < 0.01) and maintaining activation complexity-both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, p < 0.01). CONCLUSION: Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.

17.
EClinicalMedicine ; 25: 100454, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32838232

RESUMEN

BACKGROUND: Identification of effective treatments in severe cases of COVID-19 requiring mechanical ventilation represents an unmet medical need. Our aim was to determine whether the administration of adipose-tissue derived mesenchymal stromal cells (AT-MSC) is safe and potentially useful in these patients. METHODS: Thirteen COVID-19 adult patients under invasive mechanical ventilation who had received previous antiviral and/or anti-inflammatory treatments (including steroids, lopinavir/ritonavir, hydroxychloroquine and/or tocilizumab, among others) were treated with allogeneic AT-MSC. Ten patients received two doses, with the second dose administered a median of 3 days (interquartile range-IQR- 1 day) after the first one. Two patients received a single dose and another patient received 3 doses. Median number of cells per dose was 0.98 × 106 (IQR 0.50 × 106) AT-MSC/kg of recipient's body weight. Potential adverse effects related to cell infusion and clinical outcome were assessed. Additional parameters analyzed included changes in imaging, analytical and inflammatory parameters. FINDINGS: First dose of AT-MSC was administered at a median of 7 days (IQR 12 days) after mechanical ventilation. No adverse events were related to cell therapy. With a median follow-up of 16 days (IQR 9 days) after the first dose, clinical improvement was observed in nine patients (70%). Seven patients were extubated and discharged from ICU while four patients remained intubated (two with an improvement in their ventilatory and radiological parameters and two in stable condition). Two patients died (one due to massive gastrointestinal bleeding unrelated to MSC therapy). Treatment with AT-MSC was followed by a decrease in inflammatory parameters (reduction in C-reactive protein, IL-6, ferritin, LDH and d-dimer) as well as an increase in lymphocytes, particularly in those patients with clinical improvement. INTERPRETATION: Treatment with intravenous administration of AT-MSC in 13 severe COVID-19 pneumonia under mechanical ventilation in a small case series did not induce significant adverse events and was followed by clinical and biological improvement in most subjects. FUNDING: None.

18.
Circ Res ; 123(5): 579-589, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29921651

RESUMEN

RATIONALE: Allogeneic cardiac stem cells (AlloCSC-01) have shown protective, immunoregulatory, and regenerative properties with a robust safety profile in large animal models of heart disease. OBJECTIVE: To investigate the safety and feasibility of early administration of AlloCSC-01 in patients with ST-segment-elevation myocardial infarction. METHODS AND RESULTS: CAREMI (Safety and Efficacy of Intracoronary Infusion of Allogeneic Human Cardiac Stem Cells in Patients With STEMI and Left Ventricular Dysfunction) was a phase I/II multicenter, randomized, double-blind, placebo-controlled trial in patients with ST-segment-elevation myocardial infarction, left ventricular ejection fraction ≤45%, and infarct size ≥25% of left ventricular mass by cardiac magnetic resonance, who were randomized (2:1) to receive AlloCSC-01 or placebo through the intracoronary route at days 5 to 7. The primary end point was safety and included all-cause death and major adverse cardiac events at 30 days (all-cause death, reinfarction, hospitalization because of heart failure, sustained ventricular tachycardia, ventricular fibrillation, and stroke). Secondary safety end points included major adverse cardiac events at 6 and 12 months, adverse events, and immunologic surveillance. Secondary exploratory efficacy end points were changes in infarct size (percentage of left ventricular mass) and indices of ventricular remodeling by magnetic resonance at 12 months. Forty-nine patients were included (92% male, 55±11 years), 33 randomized to AlloCSC-01 and 16 to placebo. No deaths or major adverse cardiac events were reported at 12 months. One severe adverse events in each group was considered possibly related to study treatment (allergic dermatitis and rash). AlloCSC-01 elicited low levels of donor-specific antibodies in 2 patients. No immune-related adverse events were found, and no differences between groups were observed in magnetic resonance-based efficacy parameters at 12 months. The estimated treatment effect of AlloCSC-01 on the absolute change from baseline in infarct size was -2.3% (95% confidence interval, -6.5% to 1.9%). CONCLUSIONS: AlloCSC-01 can be safely administered in ST-segment-elevation myocardial infarction patients with left ventricular dysfunction early after revascularization. Low immunogenicity and absence of immune-mediated events will facilitate adequately powered studies to demonstrate their clinical efficacy in this setting. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02439398.


Asunto(s)
Mioblastos Cardíacos/trasplante , Infarto del Miocardio/terapia , Trasplante de Células Madre/métodos , Disfunción Ventricular Izquierda/terapia , Anciano , Femenino , Humanos , Infusiones Intraarteriales , Masculino , Persona de Mediana Edad , Mioblastos Cardíacos/citología , Infarto del Miocardio/complicaciones , Trasplante de Células Madre/efectos adversos , Trasplante Homólogo , Disfunción Ventricular Izquierda/complicaciones
19.
Stem Cells Int ; 2018: 8917913, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29760737

RESUMEN

BACKGROUND: Paralysis of one vocal fold leads to glottal gap and vocal fold insufficiency that has significant impact upon a patient's quality of life. Fillers have been tested to perform intracordal injections, but they do not provide perdurable results. Early data suggest that enriching fat grafts with adipose-derived regenerative cells (ADRCs) promote angiogenesis and modulate the immune response, improving graft survival. The aim of this study is to propose ADRC-enriched adipose tissue grafts as effective filler for the paralyzed vocal fold to use it for functional reconstruction of the glottal gap. METHOD: This is the first phase I-IIA clinical trial (phase I/IIA clinical trial, unicentric, randomized, controlled, and two parallel groups), to evaluate the safety of a new therapy with ADRC-enriched fat grafting (ADRC: group I) for laryngoplasty after unilateral vocal fold paralysis. Control group patients received centrifuged autologous fat (CAF: group II) grafts. Overall mean age is 52.49 ± 16.60 years. Group I (ADRC): 7 patients (3 males and 4 females), 52.28 ± 20.95 year. Group II (CAF): 7 patients (3 males and 4 females), 52.71 ± 12.59 year. RESULTS: VHI-10 test showed that preoperative mean score was 24.21 ± 8.28. Postoperative mean score was 6.71 ± 6.75. Preoperative result in group I was 21.14 ± 3.58 and postoperative result was 3.14 ± 3.53. Preoperative result for group II was 27.29 ± 10.66. Postoperative score in group II was 10.29 ± 7.52. Wilcoxon and the Student t-tests showed that the patient's self-perception of posttreatment improvement is larger when ADRCs are used. Comparing pre- and posttreatment voice quality analysis, group I showed a p = 0.053. Group II showed a p = 0.007. There would be no significant differentiation between pre- and posttreatment results. This is true for group II and limited for group I. CONCLUSIONS: This prospective trial demonstrates the safety and efficacy of the treatment of glottal gap defects utilizing ADRC-enriched fat grafts. This trial is registered with NCT02904824.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...