Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Pollut Res Int ; 30(31): 76455-76470, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37277590

RESUMEN

The textile industry is known for its large consumption of water, energy, and chemical products, making it one of the most environmentally impactful activities. To measure these environmental impacts, life cycle analysis (LCA) is a powerful tool that considers the entire process, from the extraction of raw materials to the finalization of textile products. In this context, this work aimed to present a systematic study on the use of the LCA methodology in the environmental assessment of effluents from the textile industry. The survey for data was carried out using the Scopus and Web of Science databases, and the PRISMA method was utilized for organizing and selecting of articles. During the meta-analysis phase bibliometric and specific data were extracted from selected publications. For the bibliometric analysis, a quali-quantitative approach was adopted, and the VOSviewer software was employed. The review encompasses a total of 29 articles, which were published between 1996 and 2023.The majority of the reviewed articles have shown the use of the LCA as a supportive tool for optimization focusing on sustainability, comparing the environmental, economic, and technical aspects through different approaches. The findings revel that China has the highest number of authors among the selected articles, while researchers from France and Italy had the highest number of international collaborations. The ReCiPe and CML methods were the most frequently used for evaluating life cycle inventories, with global warming, terrestrial acidification, ecotoxicity, and ozone depletion being the main impact categories. The use of activated carbon in textile effluents treatment has shown to be promising since it is environmentally friendly.


Asunto(s)
Ambiente , Industria Textil , Animales , Calentamiento Global , Estadios del Ciclo de Vida , China
3.
Environ Pollut ; 300: 118916, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104558

RESUMEN

Bank filtration (BF) has been employed for more than a century for the production of water with a better quality, and it has been showing satisfactory results in diclofenac attenuation. Considered the most administered analgesic in the world, diclofenac has been frequently detected in water bodies. Besides being persistent in the environment, this compound is not completely removed by the conventional water treatments, drinking water treatment plants (DWTPs) and wastewater treatment plant (WWTPs). BF has a high complexity, whose efficiency depends on the characteristics of the observed pollutant and on the environment where the system in installed, which is why this is a topic that has been constantly studied. Nevertheless, studies present the behavior of diclofenac during the BF process. In this context, this research performed the evaluation of the factors and the biogeochemical processes that influence the efficiency of the BF technique in diclofenac removal. The aerobic conditions, higher temperatures, microbial biomass density, hydrogen potential close to neutrality and sediments with heterogeneous fractions are considered the ideal conditions in the aquifer for diclofenac removal. Nonetheless, there is no consensus on which of these factors has the greatest contribution on the mechanism of attenuation during BF. Studies with columns in laboratory and modeling affirm that the highest degradation rates occur in the first centimeters (5-50 cm) of the passage of water through the porous medium, in the environment known as hyporheic zone, where intense biogeochemical activities occur. Research has shown 100% removal efficiency for diclofenac persistent to compounds not removed during the BF process. However, half of the studies had removal efficiency that ranged between 80 and 100%. Therefore, the performance of more in-depth studies on the degradation and mobility of this compound becomes necessary for a better understanding of the conditions and biogeochemical processes which act in its attenuation.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Biomasa , Diclofenaco , Filtración , Agua Subterránea/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
4.
Mar Pollut Bull ; 169: 112553, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34091245

RESUMEN

Sensitive biomes, such as coastal ecosystems, have become increasingly susceptible to environmental impacts caused by oil logistics and storing, which, although more efficient nowadays, still cause spills. Thus, bioremediation techniques attract attention owing to their low impact on the environment. Among petroleum-based compounds, polycyclic aromatic hydrocarbons (PAHs) are known for their potential impact and persistence in the environment. Therefore, PAH bioremediation is notably a technique capable of reducing these polluting compounds in the environment. However, there is a lack of understanding of microbial growth process conditions, leading to a less efficient choice of bioremediation methods. This article provides a review of the bioremediation processes in mangroves contaminated with oils and PAHs and an overview of some physicochemical and biological factors. Special attention was given to the lack of approach regarding experiments that have been conducted in situ and that considered the predominance of the anaerobic condition of mangroves.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Biodegradación Ambiental , Ecosistema , Hidrocarburos Policíclicos Aromáticos/análisis
5.
Bull Environ Contam Toxicol ; 107(3): 385-397, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34142191

RESUMEN

The indiscriminate use of glyphosate is one of the main agricultural practices to combat weeds and grasses; however, its incorrect application increases soil and water contamination caused by the product. This situation is even more critical due to its great versatility for use in different cultivars and at lower prices, making it the most used pesticide in the world. Nevertheless, there is still a lack of in-depth studies regarding the damage that its use may cause. Therefore, this review focused on the analysis of environmental impacts at the soil-water interface caused by the use of glyphosate. In this sense, studies have shown that the intensive use of glyphosate has the potential to cause harmful effects on soil microorganisms, leading to changes in soil fertility and ecological imbalance, as well as impacts on aquatic environments derived from changes in the food chain. This situation is similar in Brazil, with the harmful effects of glyphosate in nontarget species and the contamination of the atmosphere. Therefore, it is necessary to change this scenario by modifying the type of pest control in agriculture, and actions such as crop rotation and biological control.


Asunto(s)
Herbicidas , Brasil , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/análisis , Herbicidas/toxicidad , Suelo , Glifosato
6.
Data Brief ; 14: 255-259, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28861449

RESUMEN

This article presented an innovative data of feasibility to produce Arachidonic acid (ARA), as added-value Polyunsaturated Fatty Acids (PUFA), among other lipids from Mortierella elongata, using simulated low cost sugarcane wastewater, vinasse, as a carbon source. Data from lipids quantification by total lipids extraction and by lipid classes was presented. M. elongata was able to produce 156.45mg of ARA per g of total lipids.

7.
Crit Rev Biotechnol ; 37(8): 1048-1061, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28423943

RESUMEN

This review aims to present an innovative concept of high value added lipids produced by heterotrophic microorganisms, bacteria and fungi, using carbon sources, such as sugars, acids and alcohols that could come from sugarcane vinasse, which is the main byproduct from ethanol production that is released in the distillation step. Vinasse is a rich carbon source and low-cost feedstock produced in large amounts from ethanol production. In 2019, the Brazilian Ministry of Agriculture, Livestock and Food Supply estimates that growth of ethanol domestic consumption will be 58.8 billion liters, more than double the amount in 2008. This represents the annual production of more than 588 billion liters of vinasse, which is currently used as a fertilizer in the sugarcane crop, due to its high concentration of minerals, mainly potassium. However, studies indicate some disadvantages such as the generation of Greenhouse Gas emission during vinasse distribution in the crop, as well as the possibility of contaminating the groundwater and soil. Therefore, the development of programs for sustainable use of vinasse is a priority. One profitable alternative is the fermentation of vinasse, followed by an anaerobic digester, in order to obtain biomaterials such as lipids, other byproducts, and methane. Promising high value added lipids, for instance carotenoids and polyunsaturated fatty acids (PUFAS), with a predicted market of millions of US$, could be produced using vinasse as carbon source, to guide an innovative concept for sustainable production. Example of lipids obtained from the fermentation of compounds present in vinasse are vitamin D, which comes from yeast sucrose fermentation and Omega 3, which can be obtained by bacteria and fungi fermentation. Additionally, several other compounds present in vinasse can be used for this purpose, including sucrose, ethanol, lactate, pyruvate, acetate and other carbon sources. Finally, this paper illustrates the potential market and microbial processes, using microorganisms, for lipid production.


Asunto(s)
Metabolismo de los Lípidos , Saccharum/metabolismo , Carbono , Etanol , Fermentación , Lípidos
8.
Biodegradation ; 24(2): 269-78, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22910812

RESUMEN

Because benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol are important contaminants present in Brazilian gasoline, it is essential to develop technology that can be used in the bioremediation of gasoline-contaminated aquifers. This paper evaluates the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor fed with water containing gasoline constituents under denitrifying conditions. Two HAIB reactors filled with polyurethane foam matrices (5 mm cubes, 23 kg/m(3) density and 95 % porosity) for biomass attachment were assayed. The reactor fed with synthetic substrate containing protein, carbohydrates, sodium bicarbonate and BTEX solution in ethanol, at an Hydraulic retention time (HRT) of 13.5 h, presented hydrocarbon removal efficiencies of 99 % at the following initial concentrations: benzene 6.7 mg/L, toluene 4.9 mg/L, m-xylene and p-xylene 7.2 mg/L, ethylbenzene 3.7 mg/L, and nitrate 60 mg N/L. The HAIB reactor fed with gasoline-contaminated water at an HRT of 20 h showed hydrocarbon removal efficiencies of 96 % at the following initial concentrations: benzene, 4.9 mg/L; toluene, 7.2 mg/L; m-xylene, 3.7 mg/L; and nitrate 400 mg N/L. Microbiological observations along the length of the HAIB reactor fed with gasoline-contaminated water confirmed that in the first segment of the reactor, denitrifying metabolism predominated, whereas from the first sampling port on, the metabolism observed was predominantly methanogenic.


Asunto(s)
Derivados del Benceno/metabolismo , Benceno/metabolismo , Biodegradación Ambiental , Tolueno/metabolismo , Xilenos/metabolismo , Anaerobiosis , Biomasa , Desnitrificación
9.
Appl Biochem Biotechnol ; 120(2): 109-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15695840

RESUMEN

Anaerobic sequencing batch reactors containing granular or flocculent biomass have been employed successfully in the treatment of piggery wastewater. However, the studies in which these reactors were employed did not focus specifically on accelerating the hydrolysis step, even though the degradation of this chemical oxygen demand (COD) fraction is likely to be the limiting step in many investigations of this type of wastewater. The mechanically stirred anaerobic sequencing batch biofilm reactor offers an alternative for hastening the hydrolysis step, because mechanical agitation can help to speed up the reduction of particle sizes in the fraction of particulate organic matter. In the present study, a 4.5-L reactor was operated at 30 degrees C, with biomass immobilized on cubic polyurethane foam matrices (1 cm of side) and mechanical stirring provided by three flat-blade turbines (6 cm) at agitation rates varying from 0 to 500 rpm. The reactor was operated to treat diluted swine waste, and mechanical stirring efficiently improved degradation of the suspended COD. The operational data indicate that the reactor remained stable during the testing period. After 2 h of operation at 500 rpm, the suspended COD decreased by about 65% (from 1500 to 380 mg/L). Apparent kinetic constants were also calculated by modified first-order expressions.


Asunto(s)
Bacterias Anaerobias/fisiología , Biopelículas/crecimiento & desarrollo , Reactores Biológicos/microbiología , Estiércol/microbiología , Eliminación de Residuos Líquidos/instrumentación , Animales , Bacterias Anaerobias/crecimiento & desarrollo , Estudios de Factibilidad , Cinética , Mecánica , Reología/instrumentación , Reología/métodos , Porcinos , Factores de Tiempo , Eliminación de Residuos Líquidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...