Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 109(1): 241-260, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748255

RESUMEN

Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Lantano/farmacología , Estrés Oxidativo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Canales Aniónicos Dependientes del Voltaje/genética
2.
J Exp Bot ; 69(16): 4003-4015, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29767755

RESUMEN

Potassium (K+) is a major macronutrient required for plant growth. An adaptive mechanism to low-K+ conditions involves activation of the Ca2+ signaling network that consists of calcineurin B-like proteins (CBLs) and CBL-interacting kinases (CIPKs). The CBL-interacting protein kinase 9 (CIPK9) has previously been implicated in low-K+ responses in Arabidopsis thaliana. Here, we report a protein phosphatase 2C (PP2C), AP2C1, that interacts with CIPK9. Fluorescence resonance energy transfer (FRET), bimolecular fluorescence complementation (BiFC), and co-localization analyses revealed that CIPK9 and AP2C1 interact in the cytoplasm. AP2C1 dephosphorylates the auto-phosphorylated form of CIPK9 in vitro, presenting a regulatory mechanism for CIPK9 function. Furthermore, genetic and molecular analyses revealed that ap2c1 null mutants (ap2c1-1 and ap2c1-2) are tolerant to low-K+ conditions, retain higher K+ content, and show higher expression of K+-deficiency related genes contrary to cipk9 mutants (cipk9-1 and cipk9-2). In contrast, transgenic plants overexpressing AP2C1 were sensitive to low-K+ conditions. Thus, this study shows that AP2C1 and CIPK9 interact to regulate K+-deficiency responses in Arabidopsis. CIPK9 functions as positive regulator whereas AP2C1 acts as a negative regulator of Arabidopsis root growth and seedling development under low-K+ conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Potasio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Homeostasis , Mutación , Fosforilación , Unión Proteica , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA