Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 282: 116677, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971098

RESUMEN

Stingless bees (Hymenoptera: Meliponini) are pollinators of both cultivated and wild crop plants in the Neotropical region. However, they are susceptible to pesticide exposure during foraging activities. The fungicide fluazinam is commonly applied in bean and sunflower cultivation during the flowering period, posing a potential risk to the stingless bee Partamona helleri, which serves as a pollinator for these crops. In this study, we investigated the impact of acute oral exposure (24 h) fluazinam on the survival, morphology and cell death signaling pathways in the midgut, oxidative stress and behavior of P. helleri worker bees. Worker bees were exposed for 24 h to fluazinam (field concentrations 0.5, 1.5 and 2.5 mg a.i. mL-1), diluted in 50 % honey aqueous solution. After oral exposure, fluazinam did not harm the survival of worker bees. However, sublethal effects were revealed using the highest concentration of fluazinam (2.5 mg a.i. mL-1), particularly a reduction in food consumption, damage in the midgut epithelium, characterized by degeneration of the brush border, an increase in the number and size of cytoplasm vacuoles, condensation of nuclear chromatin, and an increase in the release of cell fragments into the gut lumen. Bees exposed to fluazinam exhibited an increase in cells undergoing autophagy and apoptosis, indicating cell death in the midgut epithelium. Furthermore, the fungicide induced oxidative stress as evidenced by an increase in total antioxidant and catalase enzyme activities, along with a decrease in glutathione S-transferase activity. And finally, fluazinam altered the walking behavior of bees, which could potentially impede their foraging activities. In conclusion, our findings indicate that fluazinam at field concentrations is not lethal for workers P. helleri. Nevertheless, it has side effects on midgut integrity, oxidative stress and worker bee behavior, pointing to potential risks for this pollinator.


Asunto(s)
Fungicidas Industriales , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Abejas/efectos de los fármacos , Abejas/fisiología , Fungicidas Industriales/toxicidad , Muerte Celular/efectos de los fármacos , Aminopiridinas
2.
Environ Toxicol Pharmacol ; 110: 104516, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032582

RESUMEN

Partamona helleri is an important pollinator in the Neotropics. However, this bee faces an increased risk of pesticide exposure, potentially affecting both individual bees and entire colonies. Thus, this study aimed to evaluate the effects of the herbicide tebuthiuron on behavior, antioxidant activity, midgut morphology, and signaling pathways related to cell death, cell proliferation and differentiation in P. helleri workers. tebuthiuron significantly reduced locomotor activity and induced morphological changes in the midgut. The activity of the detoxification enzymes superoxide dismutase and glutathione S-transferase increased after exposure, indicating a detoxification mechanism. Furthermore, the herbicide led to alterations in the number of positive cells for signaling-pathway proteins in the midgut of bees, suggesting induction of apoptotic cell death and disruption of midgut epithelial regeneration. Therefore, tebuthiuron may negatively impact the behavior, antioxidant activity, morphology, and physiology of P. helleri workers, potentially posing a threat to the survival of this non-target organism.

3.
Chemosphere ; 358: 142240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705417

RESUMEN

The Aedes aegypti mosquito is a vector for various arboviruses, including dengue and yellow fever. Insecticides, such as pyrethroids and organophosphates, are widely used to manage and control these insects. However, mosquitoes have developed resistance to these chemicals. Therefore, this study aimed to investigate the effects of the commercial formulation of fipronil (Tuit® Florestal; 80% purity) on the survival, behavior, morphology, and proteins related to signaling pathways of the midgut in A. aegypti larvae under controlled laboratory conditions. Significant reductions in immature survival were observed in all concentrations of fipronil tested. Low insecticide concentration (0.5 ppb) led to decreased locomotor activity in the larvae and caused disorganization of the epithelial tissue in the midgut. Moreover, exposure to the insecticide decreased the activity of detoxifying enzymes such as catalase, superoxide dismutase, and glutathione-S-transferase. On the other hand, the insecticide increased protein oxidation and nitric oxide levels. The detection of LC3, caspase-3, and JNK proteins, related to autophagy and apoptosis, increased after exposure. However, there was a decrease in the positive cells for ERK 1/2. Furthermore, the treatment with fipronil decreased the number of positive cells for the proteins FMRF, Prospero, PH3, Wg, Armadillo, Notch, and Delta, which are related to cell proliferation and differentiation. These findings demonstrate that even at low concentrations, fipronil exerts larvicidal effects on A. aegypti by affecting behavior and enzymatic detoxification, inducing protein oxidation, free radical generation, midgut damage and cell death, and inhibiting cell proliferation and differentiation. Thus, this insecticide may represent a viable alternative for controlling the spread of this vector.


Asunto(s)
Aedes , Insecticidas , Larva , Pirazoles , Animales , Aedes/efectos de los fármacos , Aedes/crecimiento & desarrollo , Aedes/fisiología , Pirazoles/toxicidad , Insecticidas/toxicidad , Larva/efectos de los fármacos , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Sistema Digestivo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA