Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 178: 108789, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936077

RESUMEN

Alternative Splicing (AS) is an essential mechanism for eukaryotes. However, the consequences of deleting a single exon can be dramatic for the organism and can lead to cancer in humans. Additionally, alternative 5' and 3' splice sites, which define the boundaries of exons, also play key roles to human disorders. Therefore, Investigating AS events is crucial for understanding the molecular basis of human diseases and developing therapeutic strategies. Workflow for AS event analysis can be sampling followed by data analysis with bioinformatics to identify the different AS events in the control and case samples, data visualization for curation, and selection of relevant targets for experimental validation. The raw output of the analysis software does not favor the inspection of events by bioinformaticians requiring custom scripts for data visualization. In this work, we propose the Geneapp application with three modules: GeneappScript, GeneappServer, and GeneappExplorer. GeneappScript is a wrapper that assists in identifying AS in samples compared in two different approaches, while GeneappServer integrates data from AS analysis already performed by the user. In GeneappExplorer, the user visualizes the previous dataset by exploring AS events in genes with functional annotation. This targeted screens that Geneapp allows to perform helps in the identification of targets for experimental validation to confirm the hypotheses under study. The Geneapp is freely available for non-commercial use at https://geneapp.net to advance research on AS for bioinformatics.


Asunto(s)
Empalme Alternativo , Programas Informáticos , Empalme Alternativo/genética , Humanos , Biología Computacional/métodos , Internet
2.
Sci Rep ; 14(1): 9811, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684872

RESUMEN

Most research on trinucleotide repeats (TRs) focuses on human diseases, with few on the impact of TR expansions on plant gene expression. This work investigates TRs' effect on global gene expression in Psidium guajava L., a plant species with widespread distribution and significant relevance in the food, pharmacology, and economics sectors. We analyzed TR-containing coding sequences in 1,107 transcripts from 2,256 genes across root, shoot, young leaf, old leaf, and flower bud tissues of the Brazilian guava cultivars Cortibel RM and Paluma. Structural analysis revealed TR sequences with small repeat numbers (5-9) starting with cytosine or guanine or containing these bases. Functional annotation indicated TR-containing genes' involvement in cellular structures and processes (especially cell membranes and signal recognition), stress response, and resistance. Gene expression analysis showed significant variation, with a subset of highly expressed genes in both cultivars. Differential expression highlighted numerous down-regulated genes in Cortibel RM tissues, but not in Paluma, suggesting interplay between tissues and cultivars. Among 72 differentially expressed genes with TRs, 24 form miRNAs, 13 encode transcription factors, and 11 are associated with transposable elements. In addition, a set of 20 SSR-annotated, transcribed, and differentially expressed genes with TRs was selected as phenotypic markers for Psidium guajava and, potentially for closely related species as well.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Repeticiones de Microsatélite , Psidium , Psidium/genética , Repeticiones de Microsatélite/genética , Repeticiones de Trinucleótidos/genética , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Sci Rep ; 14(1): 574, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182724

RESUMEN

Psidium guajava L., a fruit crop belonging to the Myrtaceae family, is highly valued for its nutritional and medicinal properties. The family exhibits a diverse chemical profile of essential oils and serves as a valuable resource due to its ecological interactions, adaptability, and dispersal capacity. The Myrtaceae family has been extensively studied for its terpenoids. Genetic studies have focused on foliar terpene yield in species from the Eucalypteae and Melaleucaceae tribes. To understand the evolutionary trends in guava breeding, this study predicted terpene synthase genes (TPS) from different cultivars. Through this analysis, 43 full-length TPS genes were identified, and approximately 77% of them exhibited relative expression in at least one of the five investigated plant tissues (root, leaf, bud, flower, and fruit) of two guava cultivars. We identified intra-species variation in the terpene profile and single nucleotide polymorphisms (SNPs) in twelve TPS genes, resulting in the clustering of 62 genotypes according to their essential oil chemotypes. The high concentration of sesquiterpenes is supported by the higher number of TPS-a genes and their expression. The expansion for TPS sub-families in P. guajava occurred after the expansion of other rosids species. Providing insight into the origin of structural diversification and expansion in each clade of the TPS gene family within Myrtaceae. This study can provide insights into the diversity of genes for specialized metabolites such as terpenes, and their regulation, which can lead to a diverse chemotype of essential oil in different tissues and genotypes. This suggests a mode of enzymatic evolution that could lead to high sesquiterpene production, act as a chemical defense and contribute to the adaptive capacity of this species to different habitats.


Asunto(s)
Myrtaceae , Aceites Volátiles , Psidium , Psidium/genética , Fitomejoramiento , Terpenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA