Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132801

RESUMEN

Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.

2.
J Appl Oral Sci ; 31: e20230146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729259

RESUMEN

OBJECTIVE: Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY: Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS: CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION: This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.


Asunto(s)
Quitosano , Caries Dental , Aceites Volátiles , Preescolar , Humanos , Aceites Volátiles/farmacología , Candida albicans , Streptococcus mutans , Quitosano/farmacología , Caries Dental/prevención & control , Biopelículas
3.
Med Mycol ; 61(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553154

RESUMEN

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

4.
J. appl. oral sci ; 31: e20230146, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1514408

RESUMEN

Abstract Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. Objective This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. Methodology Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. Results CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. Conclusion This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.

5.
Microb Pathog ; 150: 104670, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33285221

RESUMEN

This work aimed to evaluate the ability of Sporothrix species to attach and form biofilm on the surface of cat claws as an ex vivo model. A total of 14 strains (5 Sporothrix brasiliensis, 3 Sporothrix schenckii s. str., 3 Sporothrix globosa and 3 Sporothrix mexicana) were used. The biofilms were incubated for periods of 01, 03, 07, 10 and fifteenth 15 days. Their metabolic activities were evaluated by the XTT reduction assay and the morphology and structure were investigated by scanning electron microscopy (SEM). The analysis of the SEM images revealed that all the species can form biofilms on cat claws. The metabolic activity in the ex vivo biofilms was similar to that found in in vitro biofilms when incubated for the same period. This is the first report of an ex vivo biofilm model involving cat claws. The ability to form biofilms on cat claws can increase the viable period of the fungus and consequently the number of possibly infected animals and people.


Asunto(s)
Uña de Gato , Sporothrix , Esporotricosis , Animales , Biopelículas , Esporotricosis/veterinaria
6.
Biofouling ; 36(8): 909-921, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33059473

RESUMEN

This study investigated the effect of the quorum sensing molecules (QSMs) farnesol, 2-phenylehtanol, tyrosol and tryptophol against planktonic cells, filamentation and biofilms of Sporothrix spp. The antifungal activity of QSMs was evaluated by broth microdilution. QSMs showed MICs in the ranges of 0.01-1 µM (farnesol), 1-8 mM (2-phenylehtanol and tyrosol), and >16 mM (tryptophol). Filamentous biofilm formation was inhibited by farnesol and 2-phenylehtanol and stimulated by tyrosol. Yeast biofilm formation was inhibited by 2-phenylehtanol and tyrosol. Tryptophol did not affect Sporothrix biofilm formation. QSMs showed MICs against mature biofilms of 8-32 µM (farnesol), 8-32 mM (2-phenylehtanol) and 64-128 mM (tyrosol). In conclusion, farnesol, 2-phenylethanol and tyrosol have antifungal activity against planktonic and sessile cells and modulate filamentation and biofilm formation in Sporothrix spp.


Asunto(s)
Percepción de Quorum , Sporothrix , Antifúngicos/farmacología , Biopelículas , Farnesol/farmacología , Plancton
7.
Med Mycol ; 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838409

RESUMEN

The present study evaluated the antifungal activity of the chelators deferiprone (DFP) and ethylenediaminetetraacetic acid (EDTA) and their effect on biofilm formation of the S. schenckii complex. Eighteen strains of Sporothrix spp. (seven S. brasiliensis, three S. globosa, three S. mexicana and five Sporothrix schenckii sensu stricto) were used. Minimum inhibitory concentration (MIC) values for EDTA and DFP against filamentous forms of Sporothrix spp. ranged from 32 to 128 µg/ml. For antifungal drugs, MIC values ranged from 0.25 to 4 µg/ml for amphotericin B, from 0.25 to 4 µg/ml for itraconazole, and from 0.03 to 0.25 µg/ml for terbinafine. The chelators caused inhibition of Sporothrix spp. in yeast form at concentrations ranging from 16 to 64 µg/ml (for EDTA) and 8 to 32 µg/ml (for DFP). For antifungal drugs, MIC values observed against the yeast varied from 0.03 to 0.5 µg/ml for AMB, 0.03 to 1 µg/ml for ITC, and 0.03 to 0.13 µg/ml for TRB. Both DFP and EDTA presented synergistic interaction with antifungals against Sporothrix spp. in both filamentous and yeast form. Biofilms formed in the presence of the chelators (512 µg/ml) showed a reduction of 47% in biomass and 45% in metabolic activity. Our data reveal that DFP and EDTA reduced the growth of planktonic cells of Sporothrix spp., had synergistic interaction with antifungal drugs against this pathogen, and reduced biofilm formation of Sporothrix spp. LAY SUMMARY: Our data reveal that iron chelators deferiprone and ethylenediaminetetraacetic acid reduced the growth of planktonic cells of Sporothrix spp. as well as had synergistic interaction with antifungal drugs against this pathogen and reduced biofilm formation of Sporothrix spp.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...